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Federated Learning

• Federated Learning (FL) was introduced in McMahan et al. (2017) :
“ ... the learning task is solved by a loose federation of
participating devices ( clients) which are coordinated by a central
server.”

• Heterogeneous distributed data across different clients and
highly restrictive inter-block communication are two defining
characteristics and challenges in the FL (Li et al., 2020; Kairouz
and McMahan, 2021).
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Decentralized FL

• The canonical FL framework requires a central server for data
aggregation: heavy computation and communication burden;

• Decentralized FL (DFL) paradigm is gaining popularity, where edge
devices exchange their parameter estimates or gradient
information only with their neighboring devices (Yuan et al., 2016;
Lian et al., 2017; Sirb and Ye, 2018; Liu et al., 2022).

Figure 1: Star network (left) and decentralized network (right).
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Problem setup (1)

• A typical FL setting consists of K clients;

• Dk = {ξk
i }

nk
i=1 is the local data of client k, consists of IID

observations from an unknown distribution Pk.

• Let fk(·; ξk) and Fk(θ) = EPkfk(θ; ξk) be the k-th client specific
loss function and risk function.

• One wants to minimize the federated risk function

F(θ) =
K∑

k=1

wkFk(θ) (1)

where θ ∈ Rd is the interested parameter, wk is the pre-specified
weight.

• We allow different {Pk}K
k=1 to accommodate heterogeneity in FL.
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Problem Setup (2)

• The FL is to estimate a true parameter

θ∗
K = argmin

θ∈Rd
F(θ) (2)

• If full data communication is available, one can minimize the
empirical version of (2), and the corresponding full sample
M-estimator of θ∗

K

θ̂K = argmin
θ∈Rd

K∑
k=1

wk

nk∑
i=1

fk(θ; ξk
i ). (3)

• What if the full data communication is not available ?
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Local Connection Network

1 The decentralized FL has a connection network defined by an
undirected graph (V,E) where V = {vk}K

k=1 represents the set of
K clients and

E = {(i, j)|client i and client j are connected }

specifies the edge set.

2 C (cij) ∈ RK×K is a symmetric connection matrix defined on
(V,E) where cij > 0 if and only if (i, j) ∈ E and

∑K
j=1 cij = 1 for all

i. (column-wise probability matrix)
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Figure 2: a connection network with 6 nodes (left) and the connection matrix
C (right) where cij = 1/ (max{di, dj}+ 1) for i ̸= j and cii = 1−

∑K
j=1,j̸=i ci,j,

according to the Metropolis-Hastings rule (Boyd et al., 2006).
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Local SGD: a communication-efficient algorithm for DFL

• θ̂
k
t– the local estimate on the k-th data block at t-th step;

• Estimate matrix of all clients

Θ̂t =
(
θ̂
1

t , θ̂
2

t , · · · , θ̂
K
t

)
∈ Rd×K

• ηt – the step size, the weighted SG matrix

Ĝt = K
(

w1∇f1(θ̂
1

t ; ξ
1
t ),w2∇f2(θ̂

2

t ; ξ
2
t ), · · · ,wK∇fK(θ̂

K
t ; ξ

K
t )
)

(4)

• For each k, {ξk
t}t≥1 is chosen sequentially without replacement

from the local dataset Dk.
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Local SGD algorithm

At t = 0, all local estimates are initialized as θ̂0 ∈ Rd. For
t = 1, · · · ,T − 1 and some positive integer τ > 1,

• if t + 1 is divisible by τ , synchronize local estimates among
neighbors according to C

Θ̂t+1 =
(
Θ̂t − ηtĜt

)
C

• otherwise update the estimates locally by Θ̂t+1 = Θ̂t − ηtĜt.

Local SGD reduces the communication cost by (1− 1/τ)× 100% as
compared with classical SGD (τ = 1).

10 / 54



Quick Review: Stochastic Gradient Descent

• Robbins and Monro (1951) (Ann. Math Stats) suggested to
estimate θ∗ by recursively updating (RM procedure)

θ̂t+1 = θ̂t − ηt∇f1(θ̂t; ξ
1
t ). (5)

Lemma 1 (Chung (1954) (Ann Math Stats))
If ηt = Dt−α for some D > 0 and 1/2 < α ≤ 1, then

Tα/2(θ̂T − θ∗)
d→ N

(
0, σ2(α,D)

)
as T → ∞,

where σ2
θ = VarP1

(
∇f1(θ; ξ1)

)
and

σ2(α,D) =

{
Dσ2

θ∗/(2∇2F1(θ
∗)) if 1/2 < α < 1,

D2σ2
θ∗/(2∇2F1(θ

∗)D − 1) if α = 1,
(6)
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When α = 1,
• θ̂T is

√
T-consistent, which is the same as the convergence rate

of a regular full sample M-estimator;

• Inefficient unless D = 1/∇2F1(θ
∗);

• This requires extra information on the Hessian ∇2F1(θ
∗).

When α < 1,
• θ̂T converges at a slower rate of Tα/2.

• Asymptotically, θ̂T − θ∗ is a weighted average of only the last
C(T) = O(Tαlog(T)) gradient noises (Ruppert, 1988);

• This fact leads to less efficient estimation.
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Averaged Stochastic Gradient

• The weak serial dependence when α < 1 of {θ̂t}t≥0 motivates one
to take an average of the SGD iterate to improve statistical
efficiency:

ASGD: ˆ̄θT =
1

T

T−1∑
t=0

θ̂t;

• Such an averaging procedure is referred to as the Polyak-Ruppert
averaging (PR) (Polyak and Juditsky, 1992; Ruppert, 1988).

• It is proved that when 1/2 < α < 1,

√
T(ˆ̄θT − θ∗)

d→ N
(
0,

σ2
θ∗

(∇2F1(θ∗))2

)
. (7)
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The decentralized structure

Assumption 1 (Decentralized structure) The K-dimensional connection
matrix C satisfies C1 = 1 and CT = C whose largest eigenvalue is 1
and the other eigenvalues are strictly less than 1, namely
max{|λk(C)||k = 2, 3, · · · ,K} ≤ ρ < λ1(C) = 1 for some 0 < ρ < 1,
where λk(C) denotes the k-th largest eigenvalue of C.

Remark
• This assumption made in Xiao and Boyd (2003) is a sufficient and
necessary condition for lim

s→∞
Cs = 1

K1K1T
K, which implies that

lim
k→∞

(a1, a2, · · · , aK)Cs = āK1T
K, where ak ∈ Rd, āK = 1

K
∑K

k=1 ak.

• And ensures

lim
s→∞

ĜtCs =

( K∑
k=1

wk∇fk(θ̂
k
t ; ξ

k
t )

)
1T

K.
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Regularity conditions (1)

Assumption 2 There exist positive constants b1 < 1 < b2 and b4 > b3
such that b1 ≤

nk1
nk2

≤ b2 for all (k1, k2) pairs satisfying k1, k2 ≤ K and
b3
K ≤ wk ≤ b4

K for all 1 ≤ k ≤ K.

Assumption 3 Objective function Fk(·) is differentiable, L-smooth and
µ-strongly convex with positive constants L and µ such that for any
θ1,θ2 ∈ Rd,

L
2
∥θ1 − θ2∥22 ≥ Fk(θ1)− Fk(θ2)− ⟨∇Fk(θ2),θ1 − θ2⟩ ≥

µ

2
∥θ1 − θ2∥22

Assumption 4 The step size ηt is constant within each iteration:
ηt = η̃j for (j − 1)τ ≤ t ≤ jτ − 1; and η̃j = D(j + γ)−α

for positive constants D, γ and α.
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Regularity conditions (2)

Assumption 5 (Gradient noise variance) There exists non-negative
constants Lξ and σ2 such that the gradient noise
ϵk(θ; ξ

k) = ∇fk(θ; ξk)−∇Fk(θ) satisfies
EPk∥ϵk(θ; ξ

k)∥22 ≤ σ2 + Lξ∥∇Fk(θ)∥22 for all θ ∈ Rd.

Assumption 5 allows variance of the gradient noise ϵk(θ; ξ
k) to grow

quadratically with the Euclidean distance between θ and θ∗
K.

Assumption 6 (Bounded Heterogeneity) There is a positive κ∑K
k=1 wk∥∇F(θ)−∇Fk(θ)∥22 ≤ κ2 for any θ ∈ Rd.
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Key Quantities

THREE TYPES OF AVERAGING
• Across the clients at t: ˆ̄θt =

1
K
∑K

k=1 θ̂
k
t ;

• For a client k over time: ˆ̄θk
T = 1

T
∑T−1

t=0 θ̂
k
t

• Spatial-temporal average (The PR-estimator in DFL):
ˆ̄̄
θT = 1

TK
∑T−1

t=0

∑K
k=1 θ̂

k
t .

TWO TYPES OF ESTIMATION ERRORS
• Consensus error 1

K
∑K

k=1 E
(
∥θ̂k

t − ˆ̄θt∥22
)
.

• Mean square error (MSE) E
(
∥ˆ̄θt − θ∗

K∥22
)
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Outline of results

• We start by establishing the consensus error bound, which exists
only in decentralized setting;

• We then generalizes the MSE bound of the non-distributed SGD
algorithm to our setting: An extra term on the bound can
dominate when K is large;

• We establishes the asymptotic normality of the PR-estimator in
the decentralized FL: Efficiency is attained at a cost.
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Consensus error bound

Proposition 1

Let FK
t− = σ({ξk

s |0 ≤ s ≤ t − 1, 1 ≤ k ≤ K}) be the σ-algebra generated
by {ξk

s}s<t,1≤k≤K and Q = sup
t≥1,K≥1

1
K E∥E

(
Ĝt|FK

t−

)
∥2F where Ĝt is

defined in (4). Then, under Assumptions 1 - 6, Q is of order
O(κ2 + 1) < ∞ and

1

K

K∑
k=1

E
(
∥θ̂k

t − ˆ̄θt∥22
)
≤ c0η2t , where (8)

c0 = 2aτQ
(
(Lξ + τ) c(2α, ρ2) + τ

1− ρ
c(2α, ρ)

)
+ 2ab4τσ2c(2α, ρ2),

c(α, ρ) =
∑∞

s=0 ρ
s(1 + s)α < ∞.
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MSE bound

Theorem 2

If α ≤ 1, D > 2
µ and γ > 0 such that η1 ≤ 1

µ , then under the conditions
of Proposition 1

E
(
∥ˆ̄θT − θ∗

K∥22
)
≤ v1

ηT
K + v2η2T, (9)

where

v1 = Db4(σ2 + 3Lξκ
2)/(Dµ− 1) and

v2 = max{4Db4(L + µ)c0/(Dµ− 2),
γ2

D2
∥θ̂0 − θ∗

K∥22}.

Moreover, for each K, ˆ̄θT
as→ θ∗

K as T → ∞.
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Remark

• Compared with the result of the non-distribued SGD (Bottou
et al., 2018), there is an extra v2η2T term in (9).

• The effect of the decentralized structure C on the above MSE
bound is of the second-order and is asymptotically negligible
since the ρ factor only appears in v2 through c0.

• The heterogeneity factor κ2 enlarges the v1 term only when the
Lξ factor appeared in Assumption 5 is positive, namely when the
variance of the gradient noise is unbounded.
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Asymptotic normality (AN): conditions 1

Assumption 7 (L-average smoothness) For k = 1, 2, · · · ,K, the
objective function fk(·; ·) is L-average smooth with a positive constant
La such that for any θ1,θ2 ∈ Rd,

EPk∥∇fk(θ1; ξ
k)−∇fk(θ2; ξ

k)∥22 ≤ La∥θ1 − θ2∥22. (10)

Remark
This assumption is stronger than the smoothness condition in
Assumption 3, and holds for objective functions such as those for the
linear regression, ridge regression or logistic regression if ξk has
certain bounded moments.
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Asymptotic normality (AN): conditions 2

Assumption 8 (Regularity of gradient noise) There exist positive
constants ℓcov and δ such that for all k = 1, 2, · · · ,K,

Sk = EPkϵk(θ
∗
K; ξ

k)ϵk(θ
∗
K; ξ

k)T satisfies
Sk ⪰ ℓcovI and sup

K≥1
EPk∥ϵ(θ

∗
K; ξ

k)∥2+δ
2 < ∞,

where ϵ(θ) =
√

K
∑K

k=1 wkϵk(θ; ξ
k).

Assumption 9a (Second-order smoothness ) F(θ) =
∑K

k=1 wkFk(θ) is
second-order differentiable, and there exists LH > 0 such that

∥∇2F(θ)−∇2F(θ∗
K)∥2 ≤ LH∥θ − θ∗

K∥2

for all θ ∈ Rd and K ≥ 1.
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AN of Spatial-Temporal (PR) Average

Theorem 3

Under Assumptions required in Theorem 2 and Assumptions 7, 8 and
9a, if K = o(T2α−1) with T = min

1≤k≤K
nk, α ∈ (1/2, 1) and

sup
K≥1

∥θ∗
K∥2 < ∞, we have

√
TKS−1/2H

(
ˆ̄̄
θT − θ∗

K

)
d→ N (0, I) as T → ∞, (11)

where H = ∇2F(θ∗
K) is population Hessian and S = Eϵ(θ∗

K)ϵ(θ
∗
K)

T is
the covariance of the aggregated gradient noise.

• The statistical efficiency comes with stronger restriction on K.
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H = ∇2F(θ∗
K)

We can directly estimate the local Hessian matrix ∇2Fk(θ
∗
K) by using

a small fraction of data stored in each data node k, say {ξk
T−s}

a(T)−1
s=0 ,

where a(·) : N+ → N+ is a non-decreasing function. The estimator is
defined as

Ĥk =
1

a(T)

a(T)−1∑
s=0

∇2fm(ˆ̄θk
t ; ξ

k
T−s), Ĥ =

K∑
k=1

pkĤk. (12)

FL: LARGE K HELPS
• We do not need to consistently estimate Hk.
• Small a(T) suffices.
• The law of large numbers takes effect as K → ∞ and thus we can
derive the consistency of

∑K
k=1 pkĤk as a whole.
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S = KE
(∑K

k=1 wk∇fk(θ∗
K; ξ

k)
)(∑K

k=1 wk∇fk(θ∗
K; ξ

k)
)T

• The infeasible centralized estimator due to the cross terms:

˜̂S =
K
T

T−1∑
t=0

( K∑
k=1

wk∇fk(θ̂
k
t ; ξ

k
t )

)( K∑
k=1

wk∇fk(θ̂
k
t ; ξ

k
t )

)
• Define

Ŝk =
1

T

T−1∑
t=0

∇fk(θ̂
k
t ; ξ

k
t )∇fk(θ̂

k
t ; ξ

k
t )

T

− 1

T2

(T−1∑
t=0

∇fk(θ̂
k
t ; ξ

k
t )

)(T−1∑
t=0

∇fk(θ̂
k
t ; ξ

k
t )

)T

,

then an estimator of S can be defined as Ŝ = K
∑K

k=1 w2
kŜk.

• {∇fk(θ̂
k
t ; ξ

k
t )} are readily available when running the DFL

Algorithm and Ŝk can be updated iteratively.
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Validity of the confidence region (CR): condition

Assumption 9b (Second-order smoothness ) For all k = 1, 2, · · · ,K, we
assume that the objective function fk(θ; ξ) is second-order
differentiable with respect to θ ∈ Rd, and there exists positive
constants ℓH and H, such that√

EPm∥∇2fk(θ; ξk)−∇2fk(θ∗
K; ξ

k)∥22 ≤ ℓH∥θ − θ∗
K∥2

and EPm∥∇2fk(θ∗
K; ξ

k)−∇2Fk(θ
∗
K)∥2 ≤ H, where θ ∈ Rd and θ∗

K is the
true value defined in (2).
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Validity of the CR

Theorem 4

Under Assumptions required in Theorem 2 and Assumptions 7, 8 and
9b , if K = o(T2α−1) and Ka(T) → ∞ with T = min

1≤k≤K
nk, α ∈ (1/2, 1),

sup
K≥1

∥θ∗
K∥2 < ∞ and sup

K≥1
max

1≤k≤K
∥∇Fk(θ

∗
K)∥2 < ∞, then we have that

∥Σ̂− H−1SH−1∥2 = op(1) and

P
(

TK
(
ˆ̄̄
θT − θ∗

K

)T
Σ̂

−1
(
ˆ̄̄
θT − θ∗

K

)
≤ χ2

d,β

)
→ 1− β. (13)

for any β ∈ (0, 1), where χ2
d,β is the upper β quantile of the χ2

d

distribution, Σ̂ = Ĥ−1ŜĤ−1.

Now we are ready for the construction of the 1− β CR for θ∗
K:{

θ
∣∣∣TK

(
ˆ̄̄
θT − θ

)T
Σ̂

−1
(
ˆ̄̄
θT − θ

)
≤ χ2

d,β

}
.
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Drawback of the PR-procedure in decentralized FL

• If a large step size is chosen with α = 1/2 + ϵ as suggested in
Ruppert (1988), where ϵ is a small positive constant, then
only M = o(T2ϵ) data nodes are allowed to participate in the
decentralized FL.

• This is not satisfying when the network is large in modern
applications.

How to achieve statistical efficiency when α = 1?
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Efficient one-step estimator: motivation

• When α = 1, although ˆ̄̄
θT is not statistically efficient , it is√

TK−consistent as long as K = o(T).

• We can thus improve the ˆ̄̄
θT estimator based on the idea of

one-step estimator (Bickel, 1975). That is, given the preliminary
ˆ̄̄
θT, we define the one-step estimator as

ˆ̄̄
θos

T =
ˆ̄̄
θT −

(
Ĥ
)−1 1

T

T−1∑
t=0

K∑
k=1

wk∇fk(θ̂
k
t ; ξ

k
t ). (14)

• Each part of the RHS of (14) is “handy”.
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AN of the one-step estimator

Theorem 5

Under Assumptions required in Theorem 2 and Assumptions 7, 8 and
9b, if α = 1 and sup

K≥1
∥θ∗

K∥2 < ∞, then the one-step estimator ˆ̄̄θos
T

defined in (14) satisfies
√

TKS−1/2H
(
ˆ̄̄
θos

T − θ∗
K

)
d→ N (0, I) as T → ∞ and K → ∞

as long as K = o(T).

• This establishes the asymptotic normality of the one-step
estimator with a relaxed constraint on the number K of data
nodes.

34 / 54



Remark on the condition

• The condition K → ∞ as T → ∞ is necessary to ensure the
validity of the following first-order expansion of the estimator ˆ̄̄θT:

∥∥(ˆ̄̄θT − θ∗
K

)
− H−1 1

T

T−1∑
t=0

K∑
k=1

wk
(
∇fk(ˆ̄θt; ξ

k
t )−∇fk(θ∗

K; ξ
k
t

)∥∥
2

= op(
1√
TK

),

• Natural since we are considering a large-scale decentralized FL
problem where many clients conduct statistical inference
collaboratively.
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Sparse network structure

• In real-world appilcations, the network is often sparse and the
spectral gap 1− ρ → 0 as K → ∞.

• Assumption 1 no longer holds, introduing larger bias.

How does the network sparseness affect our previous result?

Assumption 10 (Sparse network) The connection matrix C is a
K-dimensional matrix satisfying C1 = 1 and CT = C, and the
eigenvlaues of C satisfy

max{|λk(C)||k = 2, 3, · · · ,K} ≤ 1− ρ
′

Kq < λ1(C) = 1

for some 0 < ρ
′
< 1 and q ≥ 0 as K → ∞, where λk(C) denotes the

k-th largest eigenvalue of C.
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AN on Sparse networks

Theorem 6

Under Assumption 2 -8, Assumptions 9b and 10, if τ = 1, α = 1 and the
parameter space is a compact subset of Rd, the one-step estimator
ˆ̄̄
θos

T defined in (14) satisfies
√

TKS−1/2H
(
ˆ̄̄
θos

T − θ∗
K

)
d→ N (0, I) as T → ∞ and K → ∞,

as long as K = o(T
1

6q+1 ).

Remark
The constraint on K relative to T is much stricter on a sparse network.
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Some typical network structures

(a) Cyclic: q = 2 (b) Grid: q = 1 (c) s-connected :q = 0

Figure 3: Three types of decentralized structure.
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Table 1: Six typical types of sparse network and their corresponding maximal
divergence rate of the network size K. Here the sparseness of the graph
correspondes to the lazy Metropolis matrix C̃ = 1

2 (C + I), where C is
constructed obeying the Metropolis-Hastings rule.

Graph Topology Sparseness q Network Size K

expander graph 0 o(T)

k-dimensional torus 2
k o(T

k
12+k )

2-D grid 1 o(T1/7)

star graph 2 o(T1/13)

cyclic graph 2 o(T1/13)

Erdős-Rényi random graph 0*

* For the Erdős-Rényi random graph, the statement q = 0 holds with
probability approaching 1 as K → ∞.

39 / 54



1 Preliminaries

2 The PR-procedure in DFL

3 Construction of CRs

4 One-step update

5 Numerical experiments

6 Discussion

7 Reference

40 / 54



Network setup

• Given a network size K, the nodes were denoted by their labels
1, 2, · · · ,K, and a number Kneighbor was used to denote the
number of neighbors each node has, which controlled the
connectivity of the network.

• Clients k and k′ are connected if and only if |k − k′| ≤ Kneigh
2 or

|k − k′| ≥ K − Kneigh
2 .

• Thus, for a given K, a larger (smaller) Kneighbor means a tightly
(loosely) connected network.
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Data Generating Process

• The local data sets were generated as follows: For each client k,

Xk,t
i.i.d∼ N

(
0(d−1)×1, I(d−1)×(d−1)

)
, εk,t

i.i.d∼ Γ(1, 1)− 1 and
Yk,t =

(
1, XT

k,t
)
ϕ∗

k + εk,t.

• The dimension of the parameter d = 6.

• The true parameter θ∗
K was θ∗

K =
∑K

k=1 wkϕ
∗
k where wk ≡ 1/K.

• ϕ∗
k,j = δgap ((k − 1)− (K − 1)/2) for a δgap > 0. This made the true
parameter θ∗

K = 0d.

• The parameter δgap quantifies the amount of heterogeneity across
the data blocks.

42 / 54



Consensus error

Figure 4: Average consensus error of the averaged estimator ˆ̄θT under
different numbers of block size K (K = 50, 100, 200, 400 and 800) with respect
to the number of SGD steps t (t ≤ T, where T was the local sample size)
when the rate α of the step size was 0.6 and 0.8, respectively.
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Mean square error

Figure 5: Average mean square error of the averaged estimator ˆ̄θT under
different numbers of block size K (K = 50, 100, 200, 400 and 800) with respect
to the number of SGD steps t (t ≤ T, where T was the local sample size)
when the rate α of the step size was 0.6 and 0.8, respectively.
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Absolute coverage error

Figure 6: Absolute coverage errors of the 95% confidence regions based on
the asymptotic normality of the one-step estimator (OS, α = 1, 0.8, 0.6) and
the Polyak-Ruppert averaged estimators (PR, α = 0.8, 0.6). The gap
parameter δgap was 0.2.
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Summary

• the mean square error bound and the consensus error bound are
established in decentralized FL

• the asymptotic normality of the PR-estimator in the decentralized
FL setting is established, which attains the same efficiency as the
full-sample estimator at the cost of heavier network size
constraint;

• A one-step estimator is proposed to mitigate the problem;

• The confidence regions based on both the PR-averaged estimator
and the proposed one-step estimator are constructed;

• The effect of the decentralized connection network’s sparseness
on the one-step estimator’s statistical property is also derived.
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Future works

Algorithm perspective:
• Acceleration: Qian (1999); Johnson and Zhang (2013);

• Bias correction technique: Gradient Tracking methods (Nedic
et al., 2016) and Exact Diffusion (Yuan et al., 2020).

Application perspective:
• Non-response of the clients;

• Malicious clients;
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