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Introduction: Data, Statistic and Its Distribution

Let Z1, · · · ,Zn be a set of data, and Tn = T (Z1, · · · ,Zn) be a Statistic.

Task

Tn can be an estimator to a parameter θ s.t. θ̂n = Tn;

or Tn can be a test statistic for a hypothesis: H0 : θ ∈ Ω0.

A key task of Inference is to derive/find the distribution of θ̂n, say Fθ̂n ,

Fθ̂n(x) = P(θ̂n ≤ x) for x ∈ Rd .
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Why Asymptotic Statistics?

Dilemma and Benefits

Exact fixed sample (non-asymptotical) analysis on statistics is HARD.

But, letting n→∞ simplifies things and amazingly quality
approximation to Fθ̂n(x) may be obtained.

The use of asymptotic approximation is two-fold.

Van der Vaart’s book:

It can be used for asymptotical inference (find approximate
confidence regions and testing).

Approximations can be used theoretically to study the quality
(efficiency) of statistical inference procedures.
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Stochastic Convergence

Let {Xn} be a sequence of Rp random vectors and d(x , y) be a Euclidean
distance in Rp, {Xn,X} is defined on a common (Ω,A,P).

Almost-Sure Convergence (Xn
a.s.→ X ): The sequence {Xn} is said

to converge almost surely to X

if d (Xn,X )→ 0 with probability one : P(lim
n

d (Xn,X ) = 0) = 1.

Xn
a.s.→ X =“100% sure + 100% accurate.”

Convergence in Probability (Xn
P→ X ): A sequence of random

variables {Xn} is said to converge in probability to X if for all ε > 0,

lim
n

P(d (Xn,X ) < ε) = 1.

Xn
P→ X =“100% sure+ not 100% accurate.”

Convergence in rth mean (Xn
Lr

→ X ): A sequence of random
variables {Xn} is said to converge in rth Mean to X if

lim
n

E[d (Xn,X )]r = 0.
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Convergence in Distribution (Weak Convergence)

Convergence in distribution is a type of weak convergence for r.v.s, it is
the most useful stochastic convergence in statistical inferences.

It does not require that the {Xn,X} are in the same (Ω,A,P).

Definition 2.1 ( Convergence in Distribution, Xn
d→ X )

Let {Fn} be a sequence of distribution functions for a sequence of r.v.s
{Xn}. Then Xn is said to converge in distribution to a r.v. X (with
distribution F ) if

lim
n

Fn(x) = F (x),∀x ∈ CF

where CF := {x |F (x) is continuous in x}.

Remark 1

1. The discontinuous set CcF is the countable set.

2. The spaces of {Xn,X} can different as
d→ focus on the cdfs (free of

(Ω,A)).
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A Lemma

Known in mathematical analysis: For any continuous function F , F is u.f.
continuous on [−M,M].

Lemma 2.2

If F is a continuous distribution function, then F is uniformly continuous
in R.

Remark 2

The lemma is valid for F not necessarily a cdf as long as F has limits at
±∞.
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Polya’s Theorem

Theorem 2.3

Suppose that Xn
d→ X for a random variable X with Fn and F being the

continuous distribution functions of Xn and X . Then
supx |Fn(x)− F (x)| → 0 as n→∞.

The proof uses the Covering Method: divide a diverging interval
[−M,M] by a partition {[xi−1, xi ]}K+1

i=0 of equal width δ (except the
last one).

Define ∆n = maxK+1
i=0 {|Fn(xi )− F (xi )|. As K is finite for any given

M, limn→∞∆n = 0.

Use the previous lemma.
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Asymptotic Normality

Definition 2.4

A sequence of random variables {Xn} is said to be asymptotically normal
(AN) with “mean” µn and “variance” σ2

n (σ2
n > 0 when n is sufficiently

large) if Xn−µn
σn

d→ N(0, 1), denoted as Xn ∼ AN(µn, σ
2
n).

µn and σ2
n are not necessarily to be the mean and variance of Xn. In

fact, the mean and variance of Xn may not exist.

What Xn
d→ is unknown !

That Xn
d→ N(µn, σ

2
n) is obviously wrong !

Nevertheless,

sup
t

∣∣P(Xn ≤ t)− P(N(µn, σ
2
n) ≤ t)

∣∣→ 0

as n→∞.
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Multivariate AN

Some facts:

If Xn is AN(µn, σ
2
n), then

1 Xn is AN(µ̄n, σ̄2
n) if and only of (iff) σ̄n

σn
→ 1 and µn−µ̄n

σn
→ 0.

2 anXn + bn is AN(µ̄n, σ̄2
n) iff an → 1 and µn(an−1)+bn

σn
→ 0.

Definition 2.5 (Multivariate AN)

A seq of random vectors {Xn} istb AN with “mean” µn and “variance” Σn

(Σn is positive definite when n is sufficiently large) , if

a′Xn is AN (a′µn, a
′Σa), ∀a ∈ RP .
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How to establish Xn
d→ X?

Lemma 2.6 (Portmanteau Lemma)

For any random vectors Xn and X , the following the following statements
are equivalent.

1 Xn
d→ X ;

2 Ef (Xn)→ Ef (X ) for any f ∈ CB ;

3 Ef (Xn)→ Ef (X ) for any f ∈ CB,Lip;

4 lim inf E f (Xn) ≥ Ef (X ) for all nonnegative, continuous f ;

5 lim inf P (Xn ∈ G ) ≥ P(X ∈ G ) for any open set G ;

6 lim supP (Xn ∈ F ) ≤ P(X ∈ F ) for any closed set F ;

7 P (Xn ∈ B)→ P(X ∈ B) for any Borel set B with P(X ∈ δB) = 0,
where δB = B− B̊ is the boundary of B.

8 (Lévy’s continuity theorem) Let {Xn} and X be r.v.s in Rd . Then

Xn
d→ X iif φXn(t)→ φ(t) ∀t ∈ Rd .
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The Proof of Portmanteau Lemma

(i) ⇒ (ii):

W.O.L.G. Assume sup |f (x)| ≤ 1. First assume the df of X , FX is continuous.

As Xn
d.−→ X , we have:

lim
n→∞

P(Xn ∈ I ) = P(X ∈ I ), for every rectangle I ⊂ Rk

On the other hand. ∀ε > 0, choose I large enough s.t. P(X ∈ IC ) < ε. Then we
partition I into many small and non-overlapped rectangles s.t. I = ∪Kj=1Ij . Choose
a xj ∈ Ij . Now let:

fε(x) =
K∑
j=1

f (xj)I(x ∈ Ij)

Obviously, we can choose K large enough to have |f (x)− fε(x)| < ε, x ∈ I .
Thus,
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The Proof of Portmanteau Lemma

|Ef (Xn)− Efε(Xn)| ≤ E [|f (Xn)− fε(Xn)|I(Xn ∈ I )]

+ E
[
|f (Xn)− fε(Xn)|I(Xn ∈ IC )

]
≤ ε+ 2P(Xn ∈ IC ) (Recall that sup |f (x)| ≤ 1)

(1)

Similarly,
|Ef (X )− Efε(X )| ≤ ε+ 2P(X ∈ IC ) < 3ε (2)

Considering,

|Efε(Xn)− Efε(X )| ≤

∣∣∣∣∣∣
K∑
j=1

f (xj)E [I(Xn ∈ Ij)− I(X ∈ Ij)]

∣∣∣∣∣∣
≤

K∑
j=1

|f (xj)||P(Xn ∈ Ij)− P(X ∈ Ij)| → 0

(3)

due to Xn
d.−→ X and K is finite. Then considering (1), (2), and (3), we have

lim
n→∞

Ef (Xn) = Ef (X ).
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The Proof of Portmanteau Lemma

If FX is not continuous:

As FX is right continuous and monotonous,

CFx := {FX is continuous at x}

is dense in Rk . Then we could choose the vertices of rectangles Ij in CFx ,
then repeat the early proof.

Song Xi Chen, Xiaojun Song (Slides) Asymptotic Statistics July 13, 2021 15 / 181



The Proof of Portmanteau Lemma

(iii) ⇒ (v)∗:

For every open set G there exists a sequence of Lipschitz functions with
0 ≤ fm ↑ 1G . For instance fm(x) = (md (x ,G c)) ∧ 1. For every fixed m,

lim inf
n→∞

P (Xn ∈ G ) ≥ lim inf
n→∞

Efm (Xn) = Efm(X )

As m→∞ the right side increases to P(X ∈ G ) by the monotone convergence
theorem.

(v) ⇔ (vi)∗:

Because a set is open if and only if its complement is closed, this follows by
taking complements.
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The Proof of Portmanteau Lemma

(v) + (vi) ⇒ (vii)∗:

Let B̊ and B̄ denote the interior and the closure of a set, respectively. By (iv),

P(X ∈ B̊ ) ≤ lim inf P
(

Xn ∈ B̊
)
≤ lim supP

(
Xn ∈ B̄

)
≤ P(X ∈ B̄,

by (v). If P(X ∈ δB) = 0, then left and right side are equal, whence all
inequalities are equities. The probability P(X ∈ B) and the limit limP (Xn ∈ B)
are between the expressions on left and right and hence equal to the common
value.

(vii) ⇒ (i)∗:

Every cell (−∞, x ] such that x is a continuity point of x 7→ P(X ≤ x) is a
continuity set.

(ii) ⇔ (iv): Exercise.
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Mapping theorem

Theorem 2.7 (Mapping)

Let g : Rk 7→ Rm be continuous at every point of a set Cg such that
P(X ∈ Cg ) = 1, then

1 If Xn
d→ X , then g (Xn)

d→ g(X )

2 If Xn
P→ X , then g (Xn)

P→ g(X )

3 If Xn
a.s.→ X , then g (Xn)

a.s.→ g(X )
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The Proof of Mapping Theorem

(i). Consider using (vi) in Portmanteau Lemma: for a closed set F , define
g−1(F ) = {xn ∈ g−1(F )} = {g(Xn) ∈ F}. We have:

g−1(F ) ⊂ g−1(F ) ⊂ g−1(F ) ∪ CC
g (4)

The last ⊂ is because of ∀x ∈ g−1(F ), here exist a sequence
{xm}m≥1 ⊂ g−1(F ) s.t. xm → x .

If x ∈ Cg , then g(xm) → g(x) ∈ F due to g(xm) ∈ F and F is a
close set. Thus, x ∈ g−1(F ).

If x /∈ Cg , (4) is evident.
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The Proof of Mapping Theorem

Then,

lim supP (g (Xn) ∈ F ) ≤ lim supP
(

Xn ∈ g−1(F )
)

(by (4) left)

≤ P(X ∈ g−1(F )) (by Portmanteau Lemma (iv))

≤ P(X ∈ g−1(F )) + P(X /∈ Cg ) (by (4) again)

= P(g(X ) ∈ F )

Apply Portmanteau Lemma (iv) ⇒ (i), we have gn(Xn)
d .−→ g(X ).
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The Proof of Mapping Theorem

(ii)∗. Fix arbitrary ε > 0. For each δ > 0 let Bδ be the set of x for which
there exists y with |x − y | < δ, but |g(x)− g(y)| > ε. If X /∈ Bδ and
|g(Xn)− g(X )| > ε, then |Xn − X | ≥ δ. Consequently,

P (|g(Xn)− g(X )| > ε) ≤ P (X ∈ Bδ) + P (|Xn − X | ≥ δ)

The second term on the right converges to zero as n→∞ for every fixed
δ > 0. Because Bδ ∩ C ↓ ∅ by continuity of g , the first term converges to
zero as δ ↓ 0.
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Example of Mapping Theorem

If Xn
d .−→ X ∼ N(0, 1), then Xn

d .−→ χ2
1.

If (
Xn

Yn

)
d .→ N2

((
0
0

)
, I2

)
then Xn/Yn

d .−→ Cauchy, whose distribution has p.d.f.

f (x) =
1

π(1 + x2)
, fµ,σ(x) =

1

πσ

1

1 + ((x − µ)/σ)2
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Example of Mapping Theorem

S2
n = n−1

∑
X 2
i − X

2
. Let Yi = (Xi ,X

2
i )>. By LLN,

1

n

n∑
i=1

Yi =


1

n

n∑
i=1

Xi

1

n

n∑
i=1

X 2
i

 →
(

µ
µ2

)
w.p.1

Let g(x , y) = y − x2. Then by Mapping Theorem:

S2
n = g

(
X , n−1

∑n
i=1 X 2

i

) p.−→= µ2 − µ2 = σ2

Apply Mapping Theorem again: Sn
p.−→ σ.
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Example of Mapping Theorem

If Xn
d.−→ Np(µ,Σ), then for any constant matrix C ∈ Rm×p,

CXn
d.−→ Nm

(
Cµ,C ΣC>

)
If Xn is AN(µ, b2

nΣ), then:

‖Xn − µ‖
bn

d.−→ a limit r.v.

In fact, since (Xn − µ)/bn
d.−→ Np(0,Σ), by Mapping Theorem,

(Xn − µ)>(Xn − µ)

b2
n

d.−→ N>p (0,Σ)Np(0,Σ)

Therefore,
‖Xn − µ‖

bn

d.−→
√

N>p (0,Σ)Np(0,Σ)
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Relations of Stochastic Convergence

Theorem 2.8

Let Xn,X and Yn be random vectors. Then

1 Xn
a.s.→ X implies Xn

P→ X ;

2 Xn
P→ X implies Xn

d→ X

3 Xn
P→ c (c is a constant) if and only if Xn

d→ c ;

4 if Xn
d→ X and d (Xn,Yn)

P→ 0 , then Yn
d→ X ;

5 if Xn
d→ X and Yn

P→ c for a constant c , then (Xn,Yn)
d→ (X , c)

6 if Xn
P→ X and Yn

P→ Y , then (Xn,Yn)
P→ (X ,Y )
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Proof

(i)∗. The sequence of sets An = ∪m≥n {‖Xm − X‖ > ε} is decreasing for
every ε > 0 and decreases to the empty set if Xn(ω)→ X (ω) for every ω.
If Xn

as→ X , then P (‖(Xn − X‖ > ε) ≤ P (An)→ 0.

(iv) We have:

An := |Ef (Xn)− Ef (Yn)| ≤E {|f (Xn)− f (Yn)|I(‖Xn − Yn‖ ≤ ε)}
+ E {|f (Xn)− f (Yn)|I(‖Xn − Yn‖ > ε)}

Only for bounded Lipschitz function f ∈ CB,Lip and ε > 0,

An ≤ LεP(‖Xn − Yn‖ ≤ ε) + 2 sup ‖f (x)‖P(‖Xn − Yn‖ > ε)

Thus, Ef (Xn)− Ef (Yn) → 0, and

Ef (Yn) = Ef (Xn) + Ef (Yn)− Ef (Xn) → Ef (X )

which implies Yn
d .−→ X due to Portmanteau Lemma (iii).
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Proof

(ii) Xn = X + (Xn − X ). Since X
d .−→ X and Xn − X

p.−→ 0, we have

Xn
d .−→ X by using (iv).

(iii) ”⇒” is from (ii). For ”⇐”, note that:

{‖Xn − c‖ ≥ ε} = {Xn ∈ ball(c , ε)C}

where ball(c , ε) = {x : ‖x − c‖ < ε} is open, so ball(c , ε)C is a closed set.
From Portmanteau Lemma,

lim supP(‖Xn − c‖ ≥ ε) = lim supP(Xn ∈ ball(c , ε)C )

≤ P
(

c ∈ ball(c , ε)C
)

= 0

Hence, P(‖Xn − c‖ ≥ ε) → 0, and thus Xn
p.−→ c.
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Proof

(v) (Xn,Yn) = (Xn, c) + (Xn,Yn)− (Xn, c). Since

(Xn,Yn)− (Xn, c) = (0,Yn − c)
p.−→ (0, 0)

From (iv), we only need to show (Xn, c)
d .−→ (X , c).

For any bounded continuous function f : (x , y) 7→ f (x , y), the marginal

function fm : x 7→ f (x , c) is also bounded continuous. As Xn
d .−→ X ,

Ef (Xn, c) = Efm(Xn) → Efm(X ) = Ef (X , c)

Hence (Xn, c)
d .−→ (X , c).

(vi) As ‖(X1,Y1)− (X2,Y2)‖ ≤ ‖X1 − X2‖+ ‖Y1 − Y2‖,

P (‖(Xn,Yn)− (X ,Y )‖ > ε) ≤ P(‖Xn − X‖ > ε/2) + P(‖Yn − Y ‖ > ε/2)

−→ 0

Song Xi Chen, Xiaojun Song (Slides) Asymptotic Statistics July 13, 2021 28 / 181



Remark

From this theorem, we know that:

Marginal Convergence in Prob ⇒ Joint Convergence in Prob.

The converse is also true due to Mapping Theorem. So,

Marginal Convergence in Prob ⇔ Joint Convergence in Prob.

Nonetheless, Marginal Convergence in Dist ; Joint Convergence in Dist,
although the converse is true via Mapping Theorem.

Copula.

If Xn is AN(µ, b2
nΣ) with bn → 0, then Xn

d−→ µ and Xn
p−→ µ.
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Slutsky’s theorem: algebraic operations for con. in dist.

Application of Theorem 2.8 and Continuous mapping theorem.

It is named after a Russian mathematical statistician/economist: Slutsky.

Lemma 2.9 (Slutsky)

Let Xn,X and Yn be random vectors or variables. If Xn
d→ X and Yn

d→ c

(or Yn
P→ c) for a constant c, then

1 Xn + Yn
d→ X + c

2 YnXn
d→ cX

3 Y−1
n Xn

d→ c−1X provided c 6= 0

The (3) is valid for matrices Yn and c and vectors Xn provided c 6= 0 is
understood as c being invertible, because taking an inverse is also
continuous.
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Slusky’s Theorem

From (v) of Theorem 2.8, if Xn
d .−→ X and Yn

p.−→ c , then

(Xn,Yn)
d .−→ (X , c)

Apply Mapping Theorem,

g(Xn,Yn)
d .−→ g(X , c)

for almost surely continuous g .

Choose g(x , y) = x + y , x × y , x/y then we obtain Slusky’s Theorem.
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Example

T-statistic:

Considering Y1, . . . ,Yn i.i.d. F with EY1 = 0 and EY 2
1 = 0. Define T-statistic:

tn :=
√

nY /Sn.

S2
n =

1

n − 1

n∑
i=1

(Yi − Y )2 =
n

n − 1

(
1

n

n∑
i=1

Y 2
i − Y

2

)
p.−→ 1 ·

(
EY 2

i − (EYi )
2
)

= EY 2
i

Hence Sn
p,−→
√

EY 2
i .

From the CLT for IID data.

√
nY

d.−→ N(0,EY 2
i )

Hence, √
nY

Sn

d.−−−−→
Slusky

N(0,EY 2
i )√

EY 2
i

d.
=== N(0, 1)
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Tightness or Stochastic Boundedness

Definition 2.10

A sequence of random vectors {Xn} is said to be stochastically bounded or
tight if ∀ε > 0 , ∃Mε > 0, s.t. supn P(||Xn|| > Mε) < ε. Denote
Xn = Op(1).

Theorem 2.11 (Prohorov’s Theorem)

1 If Xn
d→ X , then Xn is tight.

2 If Xn is tight, then ∃ a subsequence {Xni} ( ni > 1), s.t. Xni
d→ X as

ni →∞.

Remark 3

A single random vector is tight.
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Finite random vectors are tight.

Since the distribution function of ‖X‖, F (x), satisfies:

lim
x→−∞

F (x) = 0, lim
x→∞

F (x) = 1

So we can choose Mε s.t. F (Mε)− F (−Mε) is as close to 1 as possible, then,

P(‖X‖ > Mε) = 1− F (Mε) + F (−Mε)

can as small as possible. So we could choose Mε large enough s.t.

P(‖X‖ > Mε) < ε

Similarly, we have:

Remark 4

Any finite collection of r.v. {Xi}Ki=1 is tight.
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The proof of Prohorov’s Theorem

(i) only. As X is tight, one can choose Mε properly s.t.

P(‖X‖ ≥ Mε) < ε, ∀ε > 0

By Portmanteau Lemma,

lim supP(‖Xn‖ ≥ Mε) ≤ P(‖X‖ ≥ Mε) < ε

Hence ∃N, s.t. ∀n ≥ N, P(‖Xn‖ ≥ Mε) ≤ 2ε.

Note the {Xi}N−1
i=1 is tight. By modifying Mε, we can obtain

P(‖Xn‖ ≥ Mε) < ε, ∀n ∈ N+

So {Xn}n≥1 is tight.

Remark 5

(ii) is an extended vision of ”Bounded sequences must have a convergent
subsequence” in Mathematical Analysis.

Song Xi Chen, Xiaojun Song (Slides) Asymptotic Statistics July 13, 2021 35 / 181



Stochastic o and O

Definition 2.12

A sequence of random vectors {Xn} is called

1 stochastically of order {an}, with {an} being a sequence of
constants,
if Xn

an
= Op(1).

2 stochastically small, if Xn
P→ 0 and denoted as Xn = op(1).

3 stochastically of smaller order {an}, if Xn
an

= op(1), write as
Xn = op(an).
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Stochastic o and O

In a previous example, Yn − µ = X − µ = Op(n−1/2), and also Yn − µ = op(1).
However, Yn − µ = Op(n−1/2) is more accurate.

In general, considering a set of stochastic quantity {Tn}n≥1, n is typically the
sample size. Let

µn = ETn, σ2
n = var(Tn)

if they exist. From the Chebysev inequality,

P
(
σ−1
n |Tn − µn| > M

)
≤ var(Tn)

(Mσn)2
=

1

M2

Then ∀ ε > 0, we can choose Mε s.t. M−2
ε < ε, and

P
(
σ−1
n |Tn − µn| > Mε

)
< ε

which implies σ−1
n (Tn − µn) = Op(1), and Tn − µn = Op(σn). This is a typical

way to find the stochastic order of a quantity if we can labour out σ2
n.
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Basic Rules of Stochastic o and O

There are rules of calculus on o and O symbols, which we apply without
comment. For instance,

Some facts:
1 oP(1) + oP(1) = oP(1)

2 oP(1) + OP(1) = OP(1)

3 OP(1)oP(1) = oP(1)

4 (1 + oP(1))−1 = OP(1)

5 OP(1) + OP(1) = OP(1)

6 oP (OP(1)) = OP (oP(1)) = oP(1)

Remark 6

The rules should be read from left to right.
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Lemma of Stochastic Plug-in

Lemma 2.13

Let R : Rk 7→ R be a real function with R(0) = 0. Let {Xn} be a sequence

of r.v.s with values in dom(R) s.t. Xn
p→ 0. Then, ∀p > 0 ,

1 if R(h) = o (‖h‖p) as h→ 0, then R (Xn) = oP (‖Xn‖p);

2 if R(h) = O (‖h‖p) as h→ 0, then R (Xn) = OP (‖Xn‖p).

Remark 7

The function R(·) may not be continuous other than {0} in dom(R).
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Proof

(i). Let:

g(h) =

{
R(h)/‖h‖p , for h 6= 0
0 , for h = 0

Then R(Xn) = ‖Xn‖pg(Xn). We will show that g(Xn)
p.−→ 0.

Note that g(h) is continuous at 0, and P
(

lim
n→∞

Xn = 0
)

= 1, by Mapping

Theorem:
g(Xn)

p.−→ g(0) = 0

So R(Xn) = op(‖Xn‖p).
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Proof

(ii). As g(h) = R(h)/‖h‖p is bounded near x = 0 (because
R(h) = O(‖h‖p) and g(0) = 0),

∃M, δ > 0, |g(h)| ≤ M, ∀|h| < δ

so,
{ω : |g(Xn(ω))| > M} ⊂ {ω : ‖Xn(ω)‖ > δ}

Thus,
P(|g(Xn)| > M) ≤ P(‖Xn‖ > δ) → 0

In fact, ∀ε > 0, ∃N, s.t. ∀n ≥ N, P(‖Xn‖ > δ) < ε. Thus

P(|g(Xn)| > M) < ε, ∀n ≥ N

This implies g(Xn) = Op(1).
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An Applied Example

Considering X1, . . . ,Xn i.i.d. F (µ, σ2) with EX 4 <∞. Let,

Sn =
1

n

n∑
i=1

(Xi − X̄ )2 =
1

n

n∑
i=1

[
(Xi − µ)− (X̄ − µ)

]2
=

1

n

n∑
i=1

(Xi − µ)2 − (X̄ − µ)2

Since EX 4 <∞, by a standard CLT,

n−1
∑n

i=1(Xi − µ)2 − σ2√
var((Xi − µ)2)/n

d.−−→ N(0, 1)

which implies, √
n
(

1
n

∑n
i=1(Xi − µ)2 − σ2

) d.−−→ N(0, v 2)

where v 2 = var((Xi − µ)2). On the other hand, X̄ − µ = Op(n−1/2),√
n(X̄ − µ)2 = Op(n−1/2) = op(1). By Slusky Theorem,

√
n(Sn − σ2) =

√
n

(
1

n

n∑
i=1

(Xi − µ)2 − σ2

)
−
√

n(X̄ − µ)2 d.−−→ N(0, v 2)
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Chapter 2: Characteristic Functions (cf)

We need tools for derivating weak convergence.

Definition 3.1

For any random vector X with distribution function F , its cf is

φX (t) = E[e itX ] =

∫
e itxdF (x)

= E [cos tX ] + iE [sin tX ] for any t ∈ R.

The moment generating function (MGF) is

MX (t) = E[etX ].

The cf is a frequency domain view of a distribution F, it fully characterizes
F.
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Properties of Characteristic Functions

i) |φX (t)| ≤ φX (0) = 1

ii) φX (t) = φX (−t)

iii) φX (t) is uniformly continuous on R

iv) φX , |φX |2 and Re(φX ) are c.f.s of −X , X − Y for X ,Y i.i.d.F , and
(FX + F−X )/2 respectively.

v) If ∃t0 6= 0 s.t. |φX (t0)| = 1, then ∃a ∈ R and a 6= 0 s.t.
P(X ∈ {a + jh : j ∈ Z}) = 1, so X is a lattice random vector.
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Properties of Characteristic Functions (Cont.)

vi) If F is absolutely continuous, lim|t|→∞|φX (t)| = 0

vii) Two random vectors X and Y in Rd are equal in distribution,

denoted as X
d
= Y , iff φX (t) = φY (t) ∀t ∈ Rd .

viii) (Fourier Inversion) If φX is integrable, i.e. φX ∈ L1(R); then F is
continuous with density:

f (x) =
1

2π

∫
e−itxφX (t)dt.

Song Xi Chen, Xiaojun Song (Slides) Asymptotic Statistics July 13, 2021 45 / 181



Multivariate CF

The characteristic function (cf) of X a p-dimensional random vector is
defined by

φX(tT ) = Ee it
T X =

∫
Rp

e itxdFX(x) for any t ∈ Rd (5)

where FX is the cumulative distribution function.

Remark 8

The multivariate CFs inherit the properties of univariate CFs.
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Properties of Multivariate Characteristic Functions

i) ϕx(t) exists for all t ∈ Rd and is continuous.

ii) ϕX (0) = 1 and |ϕX (t)| ≤ 1 for all t ∈ Rd .

iii) For a scalar b 6= 0, ϕX/b(t) = ϕX (t/b);

For a vector c , ϕX+c(t) = exp{itTc}ϕX (t).

iv) For X and Y independent, ϕX+Y (t) = ϕX (t)ϕY (t).

v) If E‖X‖ <∞, ϕ̇X (t) exists and is continuous and ϕ̇X (0) = iµT ,
where µ = EX .

vi) If E‖X‖2 <∞, ϕ̈X (t) exists and is continuous and
ϕ̈X (0) = −EXXT .

vii) If X is Nd(µ,Σ), ϕX (t) = exp{itTµ− 1
2t

TΣt}.
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Lévy-Cramér’s Theorem

Lévy’s continuity theorem

Theorem 3.2

Let {Xn} and X be random vectors in Rd . Then Xn
d .−−→ X iif

φXn(t)→ φ(t) ∀t ∈ Rd .

Proof: ”⇒” is by Portmanteau Lemma (ii): Ef (Xn) → Ef (x) for
∀f ∈ CB , ”⇐” can be seen in P14 of vdv.

Remark 9

It provides another way for establishing weak convergence!
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Example

Suppose X1, . . . ,Xn i.i.d. Poisson(λ) for fixed λ > 0. Then the characteristic
function of Xi is:

φX (t) = exp
{
λ(e it − 1)

}
Let X̄ = n−1

∑n
i=1 Xi , check the c.f.

φ X̄−λ√
λ/n

(λ) = exp{−it
√

nλ}φX̄ (t/
√
λ/n) = exp{−i

√
nλ}φnX (t/

√
nλ)

= exp{−it
√

nλ} exp
{

nλ
(

e
it√
nλ − 1

)}
= exp

{
−it
√

nλ+ nλ

(
it√
nλ

+
i2t2

2nλ
+ o

(
1

nλ

))}
= exp{−t2/2 + o(1)} → exp{−t2/2}

Therefore,
X̄ − λ√
λ/n

d.−−→ N(0, 1)
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Example

Weak Law of Large Numbers (WLLN):

Let Y1, . . . ,Yn be IID r.v. with φY (t) being differential at t = 0 and
iµ = φ′(0), then:

Ȳ
p.−−→ µ

Proof: As φ(0) = 1 and φ′(0) exists at 0,

φY (t) = 1 + tφ′(0) + o(t), as t → 0

φȲ (t) = φnY (t/n) =
(

1 +
t

n
φ′(0) + o

( t

n

))n
=

(
1 +

itµ

n
+ o

(
1

n

))n

→ e itµ = φµ(t)

Hence, Ȳ
d .−−→ µ, and Ȳ

p.−−→ µ.
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Moments and Expansion of CFs

If r.v. X ’s r -th moment exits, then φX (t) is r -th order differentiable and,

φ
(r)
X (t) =

∫
(ix)re itxdF (x) = E{(iX )re itX}

which implies φ
(r)
X (0) = i rEX r .

Conversely, if φ
(r)
X (0) exists for an even r , then X has finite r -th absolutely

moment.

Theorem 3.3

If E|X|r <∞, then

φX (t) =
r∑

j=0

(it)j

j!
EXj + o(|t|r).
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Example: CLT

Suppose X1, . . . ,Xn i.i.d. F , with µ = EX and σ2 = EX 2 <∞. Let
Sn =

∑n
i=1 Xi , then

Sn − nµ√
nσ2

d.−−→ N(0, 1)

Proof:

φX−µ(t) = 1 +
(it)2σ2

2
+ o(t2)

φ X̄−µ√
σ2/n

= φnX−µ

(
t

σ
√

n

)
=

(
1 +

1

2

(
t

σ
√

n

)2

σ2 + o

(
t2

σ2n

))n

→ e−t
2/2

Then the result comes from Lévy-Cramér’s Theorem.
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Some Remarks

Remark 10

φX−µ(t) = 1 +
1

2
(it)2σ2 + · · ·+ (it)r

r !
mr + o(|t|r )

if E|X |r <∞ for r > 2, where mj = E(X − µ)j is j-th central moment. Then,

φ X̄−µ√
σ2/n

=

(
1− 1

2

t2

n
− 1

6

it3

n3/2

(m3

σ

)3

+
1

24

t4

n2

(m4

σ

)4

+ · · ·
)n

Higher order expansion of c.f. ⇒ Edgeworth Expansion.

Remark 11

The c.f. determines all the moments of X , but {mr := E (X )r}nr=1 cannot
determine the law of X . This the famous Moment problem. Carleman’s condition

∞∑
r=1

m
− 1

2r
2r = +∞

gives a sufficient condition for the determinacy of X .
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Cumulants (Semi-Invariants)

Definition 3.4

The cumulants κj ’s are obtained from a power series expansion of the
cumulant generating function of a r.v. X :

KX (t) := log φX (t) =
∑
j≥1

(it)j

j!
κj =: log{1 +

∑
j≥1

1

j!
mj(it)j}.

Matching, we have κ1 = m1 = EX and

κ2 = m2 −m2
1 = E(X − EX )2 =: c2,

κ3 = m3 − 3m1m2 + 2m3
1 = E(X − EX )3 =: c3,

κ4 = m4 − 4m1m3 − 3m2
2 + 12m2

1m2 − 6m4
1 = c4 − 3c2

2 .

The higher order (j > 3) cumulants are different from central moment.
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Cumulants (Semi-Invariants)

Considering X1, . . . ,Xn i.i.d. F (µ, σ2), Yi = (Xi − µ)/σ. The cumulants
for Yi are:

κ1 = 0, κ2 = 1, κ3 =
E(Xi − µ)3

σ3
, κ4 =

E(Xi − µ)4

σ4

where κ3 is called the Skewness of X , κ4 is called Kurtosis. Then,

φY (t) = exp

∑
j≥1

(it)j

j!
κj

 = exp

− t2

2
+
∑
j≥3

(it)j

j!
κj


φ X̄−µ√

nσ2

= φnY (t) = exp

{
− t2

2
+

(it)3

3!
√

n
κ3 +

(it)4

4!n
κ4 + · · ·

}
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Chapter 3: Central Limit Theorems (for ind. r.v.s)

Unlike the classical CLT, in this section, we will explore the general CLT
when the random variables is independent but not identically distributed.

Definition 4.1

For each n ≥ 1, let {Xn1,Xn2, · · · ,Xnkn} be a collection of random vectors
on a probability space (Ωn,Fn,Pn) s.t. Xn1, · · · ,Xnkn are independent
with kn →∞ as n→∞. Then {Xnj : 1 ≤ j ≤ kn}n≥1 is called a double
array of independent random vectors.

Notations:

Sn =
kn∑
j=1

Xnj , αnj = E(Xnj), αn =
kn∑
j=1

E(Xnj) =
kn∑
j=1

αnj ,

σ2
nj = Var(Xnj), σ2

n =
kn∑
j=1

σ2
nj .
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A Useful Lemma

A useful lemma in mathematical analysis.

Lemma 4.2

Let {θnj : 1 ≤ j ≤ kn}n≥1 be a double array of complex numbers satisfying
as n→∞,

i) max
1≤j≤kn

|θnj | → 0,

ii)
∑kn

j=1|θnj | ≤ M <∞ where M is free of n,

iii)
∑kn

j=1 θnj → θ for a finite complex θ, then
∏kn

j=1(1 + θnj)→ eθ.

This is a generalized formula for limn→∞(1 + θ/n)n → eθ with θnj ≡ θ/n.

References for this chapter

Chung, K. L. (2001). A course in probability theory, 3rd. Academic press.
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Preliminary

For any complex z 6= 0, the complex number w satisfying ew = z is Log z ,
i.e. Log z = w . Let w = u + vi , we have z = eue iv , which means

|z | = eu, u = log |z |, v = Arg z = arg z + 2kπ, arg z ∈ [−π, π]

then:
Log z = log |z |+ i Arg z , log z = log |z |+ i arg z

Remark 12

For any |z | < 1,

log(1 + z) =
∞∑
n=1

(−1)n−1 zn

n
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The Proof of Lemma 4.2

| log(1 + θnj)− θnj | =

∣∣∣∣(−1)m−1
θmnj
m

∣∣∣∣ ≤ |θnj |mm

≤
|θnj |2

2

∞∑
m=2

(
1

2

)m−2

= |θnj |2 < 1

Here the upper bound 1 is uniformly for all {θnj}, hence,

log(1 + θnj) = θnj + Λnj |θnj |2, where |Λnj | < 1

Now,
kn∑
j=1

log(1 + θnj) =
kn∑
j=1

θj +
kn∑
j=1

Λnj |θnj |2
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The Proof of Lemma 4.2

From (i) and (ii): ∣∣∣∣∣∣
kn∑
j=1

Λnj |θnj |2
∣∣∣∣∣∣ ≤ max

1≤j≤kn
|θnj |

kn∑
j=1

|θnj |

(ii)

≤ max
1≤j≤kn

|θnj |M
(i)−−→ 0

And from (iii), we know that

kn∑
j=1

log(1 + θnj) → θ
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Liapounov’s Theorem

Theorem 4.3

For a double array {Xnj : 1 ≤ j ≤ kn}n≥1, let Γn =
∑kn

j=1 E|Xnj − αnj |3,
which is finite for every n, and if Liapounov’s condition holds

Γn

σ3
n

=
1

σ3
n

kn∑
j=1

E|Xnj − αnj |3 → 0 as n→∞, then

Sn − αn

σn

d→ N(0, 1).

Remark 13

The constant 3 can be relaxed to 2 + δ some δ > 0.
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The Proof of Liapounov’s Theorem

Let γnj = E|Xnj − αnj |3. As:

σnj =
(
E|Xnj − αnj |2

)1/2 ≤
(
E|Xnj − αnj |3

)1/3

We have σ3
nj ≤ γnj , thus,

max
1≤j≤kn

σ3
nj ≤ max

1≤j≤kn
γnj < Γn (6)

Let φnj be the c.f. of (Xnj − αnj)/σn. As γnj is finite, from Theorem 2.8,

φnj(t) = 1−
σ2
nj t

2

2σ2
+

Λnj

6

γnj t
3

σ3
n

, where |Λnj | < 1

max
1≤j≤kn

|φnj(t)− 1| ≤ t2

2σ2
n

max
1≤j≤kn

σ2
nj +

t3

6σ3
n

max
1≤j≤kn

γnj

≤ t2

2

(
Γn

σ3
n

)2/3

+
t3

6σ3
n

max
1≤j≤kn

γnj
(6)−−→ 0

(7)

which is the Assumption (i) of Lemma (4.2).
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The Proof of Liapounov’s Theorem

In fact, note that σ2
nj = (σ3

nj)
2/3 ≤ (maxj σ

3
nj)

2/3,

maxσ2
nj

σ2
n

≤

(
maxσ3

nj

σ3
n

)2/3
(6)

≤
(

Γn

σ3
n

)2/3

→ 0

and max γnj/σ
3
n → 0 comes from the condition directly. On the other

hand,

kn∑
j=1

|φnj(t)− 1| ≤
∑
σ2
nj t

2

2σ2
+

t3

6

Γn

σ3
n

=
t2

2
+

t3

6

Γn

σ3
n

≤ M(t) (8)

which is the Assumption (ii) of Lemma (4.2).
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The Proof of Liapounov’s Theorem

Finally, as ∣∣∣∣∣∣
kn∑
j=1

Λnjγnj
σ3
n

∣∣∣∣∣∣ ≤ Γn

σ3
n

→ 0

we have,
kn∑
j=1

(φnj(t)− 1) = − t2

2
+ t3

kn∑
j=1

Λnjγnj
σ3
n

→ − t2

2
(9)

which is the Assumption (iii) of Lemma (4.2). Then from (7) to (9) and Lemma

(4.2), the c.f. of (Sn − αn)/σn =
∑kn

j=1(Xnj − αnj)/σn satisfying:

kn∏
j=1

φnj(t) =
kn∏
j=1

(1 + φnj(t)− 1) → e−t
2/2

Apply Lévy-Cramér’s Theorem., we obtain the result.
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Corollary

Theorem 4.3 implies the following for a single array {Xn}n≥1.

Corollary 4.4

Let {Xn}n ≥ 1 be a sequence of independent random vectors, αj = E(Xj),
σ2
j = Var(Xj) and γj = E|Xj − αj|3 <∞. Let Pn =

∑n
j=1 γj , if Pn

σ3
n
→ 0,

then

Sn −
∑n

j=1 αj

σn

d→ N(0, 1).
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Proof

It can be proved by Lindeberg’s method. Here we use another approach to
verify it. W.L.O.G. assumimg αj = 0.

For any f ∈ C 3 := {g | g (3) is continuous in R}. Let Y1, . . . ,Yn are
independent r.v. with Yj ∼ N(0, σ2

j ) matching the first two moments of

Xj , and Y0 =
∑n

i=1 Yi/σn ∼ N(0, 1). We want to show ∀ f ∈ C 3,

Ef

(∑n
i=1 Xi

σn

)
− Ef (Y0) → 0 (10)

which implies
∑n

i=1 Xi/σn
d .−→ Y0 (Recall Portmanteau Lemma).
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Proof

Let Zj = Y1 + . . .+ Yj−1 + Xj+1 + . . .+ Xn for 2 ≤ j ≤ n − 1, Z1 = X2 + . . .+ Xn, and
Zn = Y1 + . . .+ Yn−1, then:

Ef

(∑n
i=1 Xi

σn

)
− Ef

(∑n
i=1 Yi

σn

)
=

n∑
i=1

[
Ef

(
Zi + Xi

σn

)
− Ef

(
Zi + Yi

σn

)]
(11)

Note that:

f

(
Zi + Xi

σn

)
= f

(
Zi

σn

)
+ f ′

(
Zi

σn

)
Xi

σn
+

1

2
f ′′
(
Zi

σn

)
X 2

i

σ2
n
+ θ

(1)
i

X 3
i

3!σ3
n

f

(
Zi + Yi

σn

)
= f

(
Zi

σn

)
+ f ′

(
Zi

σn

)
Yi

σn
+

1

2
f ′′
(
Yi

σn

)
Y 2

i

σ2
n
+ θ

(2)
i

Y 3
i

3!σ3
n

where |θ(l)
i | ≤ ‖f

(3)‖∞ <∞. As EXi = EYi = 0, EX 2
i = EY 2

i = σ2
i , EY

3
i =

√
8/πσ3

i ,∣∣∣∣Ef (Zi + Xi

σn

)
− Ef

(
Zi + Yi

σn

)∣∣∣∣ ≤ 1

3!σ3
|E
[
θ

(1)
i X 3

i

]
− E

[
θ

(2)
i Y 3

i

]
|

≤ M

3!σ3
n

(
γi +

√
8

π
σ3
i

)
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Proof

Then from (11),∣∣∣∣Ef

(∑n
i=1 Xi

σn

)
− Ef

(∑n
i=1 Yi

σn

)∣∣∣∣ ≤ n∑
i=1

∣∣∣∣Ef

(
Zi + Xi

σn

)
− Ef

(
Zi + Yi

σn

)∣∣∣∣
(M = max{|θ(1)

i |, |θ
(2)
i |}) ≤ M

6

(∑n
i=1 γi
σ3
n

+

√
8

π

∑n
i=1 σ

3
i

σ3
n

)

(
n∑

i=1

σ3
i ≤ Γn) ≤ M1

6

Γn

σ3
n

→ 0

As a result, (10) is true.

Remark 14

The method of (11) is called Telescoping.
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Corollary

An immediate consequence of Liapounov CLT is

Corollary 4.5

For a double array (triangular array of independent variables)
{Xnj , 1 ≤ j ≤ kn}n≥1, if |Xnj | ≤ Mnj a.e., and lim

n→∞
max

1≤j≤kn
Mnj = 0. Let

Sn =
∑kn

j=1 Xnj , show that

Sn − E (Sn)

σn

d−→ N(0, 1).
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Null Array

Four conditions:

(a) ∀j , lim
n→∞

P(|Xnj − αnj | > εσnj) = 0,

(b) lim
n→∞

max
1≤j≤kn

P(|Xnj − αnj | > εσnj) = 0,

(c) lim
n→∞

P( max
1≤j≤kn

|Xnj − αnj | > εσnj) = 0,

(d) lim
n→∞

∑kn
j=1 P(|Xnj − αnj | > εσnj) = 0

Homework: check (d)⇒ (c)⇒ (b)⇒ (a).

Definition 4.6

A double array satisfying condition (b) is called a null array.
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Equivalent Form of Null Arrays

Proposition 4.7

A double array {Xnj , 1 ≤ j ≤ kn}n≥1 is a null array iff

∀t ∈ R, lim
n→∞

max
1≤j≤kn

|φnj(t)− 1| = 0 (e),

where φnj is a c.f. of
Xnj−αj

σn
. Furthermore, the convergence in (e) is

uniformly over any finite interval.

Remark 15

(i) If {Xnj} is a NA, then
Xnj−αj

σn

p→ 0.

(ii) Prop 4.7 implies that each element of a null array {Xnj−αj

σn
}
kn

j=1

uniformly degenerate at 0 on j when n→∞.
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Proof

”⇒”: WLOG assume αj = 0,

|φnj(t)− 1| =
∣∣∣E(e itXnj/σn − 1

)∣∣∣ ≤ E
[∣∣∣e itXnj/σn − 1

∣∣∣ I(|Xnj | > εσn)
]

+ E
[∣∣∣e itXnj/σn − 1

∣∣∣ I(|Xnj | ≤ εσn)
]

(|e itu − 1| =
√

2(1− cos tu) ≤ |tu|) ≤ 2P (|Xnj | > εσn) + |t|E
[∣∣∣∣Xnj

σn

∣∣∣∣ I(∣∣∣∣Xnj

σn

∣∣∣∣ ≤ ε)]
≤ 2P (|Xnj | > εσn) + |t|ε

Thus,
max

j
|φnj(t)− 1| ≤ 2max

j
P (|Xnj | > εσn) + |t|ε

(e) is veracious. In fact, for any |t| ≤ K ,

sup
|t|≤K

max
j
|φnj(t)− 1| ≤ 2max

j
P (|Xnj | > εσn) + Kε

so the convergence is uniform over t ∈ [−K ,K ] as dersired.
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Proof

”⇐”: It can be derived by using Lemma 2.3.2 ( Homework).

P

(∣∣∣∣Xnj

σn

∣∣∣∣ > 2

δ

)
(∗)
≤ 1

δ

∫
|t|≤δ

(1− φnj(t))dt =
1

δ

∣∣∣∣∣
∫
|t|≤δ

(1− φnj(t))dt

∣∣∣∣∣
≤ 1

δ

∫
|t|≤δ
|1− φnj(t)|dt

This implies,

max
j

P

(∣∣∣∣Xnj

σn

∣∣∣∣ > 2

δ

)
≤ max

j

1

δ

∫
|t|≤δ
|1− φnj(t)|dt

From the BCT and (e), we know condition (h) holds.
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Proof

(∗):

I(|δx | > 2) ≤ 2

(
1− sin δx

δx

)
=

2

δ

∫ δ

−δ
(1− cos tx)dt

=
2

δ

∫
|t|≤δ

(1− cos tx − i sin tx)dt

Then (∗) comes from taking expectation on both sides.

Remark 16

Bounded Convergence Theorem (BCT): Suppose fn(t) → f (t) for ∀t, and

|fn(t)| ≤ g(t),

∫
g(t)dt exists

Then, ∫
|fn(t)− f (t)|dt → 0,

∫
fn(t)dt →

∫
f (t)dt
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Lindeberg Condition (LC)

Definition 4.8

A double array {Xnj ,1≤j≤kn}n≥1 is said to satisfy the Lindeberg condition,
if ∀ε > 0,

lim
n→∞

σ−2
n

kn∑
j=1

E{(Xnj − αnj)
2I(|Xnj − αnj| > εσn)} = 0,

where αnj = E(Xnj), σ2
n =

∑kn
j=1 Var(Xnj), implicitly assumed

σ2
nj = E(X2

nj) <∞ for any n and j , .
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Lindeberg-Feller CLT

Lemma 4.9

Let u(m, n) be a function of positive integers m and n, s.t.
∀m, lim

n→∞
u(m, n) = 0, then there exists a monotone increasing sequence

{mn}, mn →∞, s.t. lim
n→∞

u(mn, n) = 0

Lindeberg’s condition is a sufficient condition (and under certain
conditions also a necessary condition) for the CLT to hold for a sequence
of independent random variables.

Theorem 4.10

[Lindeberg-Feller] For a double array {Xnj ,1≤j≤kn}n≥1, assume
Var(Xnj) = σ2nj <∞, then

(i)Sn−ESnσn

d→ N(0, 1) and (ii) the double array is a null array
iff the Lindeberg condition is satisfied.
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The Proof of Lemma 4.9

As lim
n→∞

u(m, n) = 0 for each m. ∃nm, s.t.

n ≥ nm, u(m, nm) ≤ 1

m

Here we obtain a sequence {nm}m≥1, and can make it strictly increase to
∞.
Now let mn = m s.t. nm ≤ n ≤ nm+1. When n ≥ nm,

u(mn, n) = u(m, n) ≤ 1

m

As nm ↑ ∞, mn ↑ ∞ too, and lim
n→∞

u(mn, n) = 0.
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The Proof of Lemma 4.9

1 2 m m +1

n

𝑛2

𝑛1

𝑛3

𝑛4

n3 ≤ n ≤ n4, ⇒ mn = 3
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The Proof of Theorem 4.10 ⇐

WLOG, assume EXnj = 0 and σ2
n = 1, or we can redefine Xnj = (Xnj − EXnj)/σn.

Now truncate Xnj to X ′nj with a η ∈ (0, 1):

X ′nj =

{
Xnj if |Xnj | < η
0 o.w.

(12)

Denote S ′n =
kn∑
i=1

X ′nj , σ
′2
n =

kn∑
i=1

var(X ′nj) = var(S ′n).

|EX ′nj | =

∣∣∣∣∣
∫
|x|<η

x dFnj(x)

∣∣∣∣∣ EXnj=0
======

∣∣∣∣∣
∫
|x|≥η

x dFnj(x)

∣∣∣∣∣ ≤ 1

η

∫
|x|≥η

x2 dFnj(x)

Hence,

|ES ′n| ≤
kn∑
i=1

|EX ′nj | ≤
1

η

kn∑
j=1

∫
|x|≥η

x2 dFnj(x)
Lind Con−−−−−→ 0 (13)
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The Proof of Theorem 4.10 ⇐

Similarly,

kn∑
i=1

EX ′2nj =
kn∑
j=1

∫
|x|<η

x2 dFnj(x)

=
kn∑
j=1

[∫
x2dFnj(x)−

∫
|x|≥η

x2dFnj(x)

]
σ2
n=1−−−→ 1

(14)

Hence,

σ′2n = var(S ′n) =
kn∑
j=1

EX ′2nj −
kn∑
j=1

(EX ′nj)
2 (14)−−→ 1 = σ2

n

where we use the fact:

kn∑
j=1

(EX ′nj)
2 ≤

 kn∑
j=1

|EX ′nj |

2

(12)−−→ 0
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The Proof of Theorem 4.10 ⇐

As
S ′n
σ′n

=
S ′n − ES ′n

σ′n
+

ES ′n
σ′n

,

ES ′n → 0, and σ′n → 1. From Slusky Theorem S ′n/σ
′
n and S ′n − ES ′n/σ

′
n would

convergence to the same distribution.

Next to show:
S ′n − ES ′n

σ′n

d.−−→ N(0, 1)

Song Xi Chen, Xiaojun Song (Slides) Asymptotic Statistics July 13, 2021 81 / 181



The Proof of Theorem 4.10 ⇒

From the LC, for each fixed m ≥ 1,

lim
n→∞

m2
kn∑
j=1

∫
|x|>1/m

x2dFnj(x) = 0

From Lemma 4.9, there exists {mn} ↑ ∞ s.t.

lim
n→∞

kn∑
j=1

m2
n

∫
|x|>1/mn

x2dFnj(x) = 0 (15)

Let ηn = m−1
n ↓ 0, and use ηn to replace η in the definition of X ′nj , then

|X ′nj | ≤ ηn := Mnj , lim
n→∞

max
1≤j≤kn

Mnj = lim
n→∞

ηn = 0

Then from corollary 4.5, (S ′n − ES ′n)/σ′n → N(0, 1). So does S ′n/σ
′
n. So

S ′n
d.−→ N(0, 1) as σ′n → 1.
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The Proof of Theorem 4.10 ⇐

Since

P(Sn 6= S ′n) ≤ P

 kn⋃
j=1

{Xnj 6= X ′nj}

 ≤ kn∑
j=1

P(|Xnj | ≥ ηn)

≤
kn∑
j=1

1

η2
n

∫
|x|>ηn

x2dFnj(x)
LC−−→ 0

So we have Sn − S ′n
p.−−→ 0. By Slusky, Sn

d.−−→ N(0, 1). Here we complete the
proof of sufficiency.

Song Xi Chen, Xiaojun Song (Slides) Asymptotic Statistics July 13, 2021 83 / 181



The Proof of Theorem 4.10 ⇒

Let φnj be the c.f of Xnj with EXnj = 0 and σ2
n = 1. As Sn

d.−−→ N(0, 1) in (i),

lim
n→∞

kn∏
j=1

φnj(t) = e−t
2/2, lim

n→∞

kn∑
j=1

log φjn(t) = − t2

2
(16)

and it can be reinforced that it would be holed uniform over t ∈ [−K ,K ] by using
covering method.

On the other hand, (ii) and the properties of NA imply,

lim
n→∞

sup
|t|<K

max
1≤j≤kn

|φnj(t)− 1| = 0 (17)

Let θnj = φnj(t)− 1, from the proof of Lemma 4.2, we know the following display
holds.
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The Proof of Theorem 4.10 ⇒
The following display holds.

log φnj(t) = log(1 + θnj) = θnj + Λnj |θnj |2 = φnj(t)− 1 + Λnj |φnj(t)− 1|2 (18)

where |Λnj | < 1 uniformly. Furthermore,

kn∑
j=1

|φnj(t)− 1|2 ≤ max
1≤j≤kn

|φnj(t)− 1|
kn∑
j=1

|φnj(t)− 1| (17)&(∗)−−−−−→ 0 (19)

where (∗) is the fact that,

kn∑
j=1

|φnj(t)− 1| =
kn∑
j=1

∣∣∣∣∫ (e itx − 1)dFnj(x)

∣∣∣∣
Taylor Exp

========
of e itx

kn∑
j=1

∣∣∣∣∫ (itx + κt
t2x2

2
)dFnj(x)

∣∣∣∣ ≤ t2

2
<∞

in which κt ∈ (0, 1).
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The Proof of Theorem 4.10 ⇒
Then, from (16) and (18), we obtain:

lim
n→∞

kn∑
j=1

(φnj(t)− 1) = lim
n→∞

kn∑
j=1

log φjn(t) = − t2

2

By taking the real part,

lim
n→∞

∑
j

∫ ∞
−∞

(1− cos tx)dFnj(x) =
t2

2

Hence for each η > 0, split the integral into two parts, by Chebyshev’s inequality,

lim
n→∞

∣∣∣∣∣∣ t
2

2
−
∑
j

∫
|x|≤η

(1− cos tx)dFnj(x)

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
∑
j

∫
|x|>η

(1− cos tx)dFnj(x)

∣∣∣∣∣∣
≤ lim

n→∞

∑
j

∫
|x|>η

2dFnj(x)

≤ lim
n→∞

2
∑
j

σ2
nj

η2
=

2

η2
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The Proof of Theorem 4.10 ⇒

Note that 0 ≤ 1− cos θ ≤ θ2/2 for every real θ, this implies,

2

η2
≥ lim

n→∞

 t2

2
−
∑
j

t2

2

∫
|x|≤n

x2dFnj(x)

 ≥ 0

Therefore, for fixed η > 0,

lim
n→∞

kn∑
j=1

E
(
|X 2

nj |I (|Xnj | > η)
)

= lim
n→∞

1−
kn∑
j=1

∫
|x|≤η

x2dFnj(x)

 ≤ 4

t2η2

Let t →∞, we have:

kn∑
j=1

E
(
|X 2

nj |I (|Xnj | > η)
)
−→ 0

which exactly is the LC.
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Example: Regression

yj = xjβ + εj , εj i.i.d. N(0, σ2
ε ), j = 1, 2, . . .

where {xj}j≥1 are fixed design points, s.t.

max
1≤j≤n

|xj |
an
→ 0, a2

n =
n∑

j=1

x2
j

The ordinary least square estimate is β̂LS =
∑n

j=1 xjyj/a2
n. We want to show that

an(β̂LS − β)
d.−−→ N(0, σ2).

an(β̂LS − β) =

∑
xjyj − β

∑
x2
j

an
=

∑
xjεj

an
=:

n∑
j=1

Xnj

where:

Xnj =
xjεj√∑

x2
j

, αnj = EXnj = 0, σ2
nj =

x2
j σ

2

a2
n

, σ2
n = σ2

ε
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Example: Regression

Here {Xnj , 1 ≤ j ≤ n}n≥1 is a triangular array, and

σ−2
n

n∑
j=1

E
[
X 2
njI(|Xnj | > δσn)

]
=

1

σ2
na2

n

n∑
j=1

x2
j E
[
ε2
j I (|xjεj/an| > δσn)

]
(mn = max

j
|xj/an|) ≤

1

σ2a2
n

n∑
j=1

x2
j E
[
ε2
j I(|εj | > δσεm

−1
n )
]

=
1

σ2
ε

E
[
ε2
j I(|εj | > δσεm

−1
n )
]
−→ 0

as mn → 0. From Theorem 4.10, we know that,

an(β̂LS − β) =
n∑

j=1

Xnj
d .−−→ N(0, σ2

ε )

Song Xi Chen, Xiaojun Song (Slides) Asymptotic Statistics July 13, 2021 89 / 181



A Sufficient Condition of LC

There is a sufficient condition to verify the Lindeberg-Feller condition.

Proposition 4.11

For a double array {Xnj}knj=1 with means {µnj} and variances {σ2
nj}. If for

some ν > 2,
kn∑
j=1

E|Xnj − µnj |ν = o(σνn)

Then, the Lindeberg condition is valid.
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Proof

E
[
(Xnj − µnj)

2 I (|Xnj − µnj | > εσn)
]

=

∫
|t−µnj |>εσn

(t − µnj)
2dFnj(t)

≤ (εσn)2−ν
∫
|t−µnj |>εσn

(t − µnj)
νdFnj(t)

≤ (εσn)2−νE|Xnj − µnj |ν

Therefore,

1

σ2
n

kn∑
j=1

E
[
(Xnj − µnj)

2 I (|Xnj − µnj | > εσn)
]

≤ ε2−ν

kn∑
j=1

E|Xnj − µnj |ν

σνn
−→ 0

The LC holds.
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CLT for m-dependent r.v.s

Definition 4.12

Def: A sequence of r.v. {Xn}n≥1 istb m-dependent if ∃ a positive integer
m s.t. for any n ≥ 1 and j ≥ m,Xn+j is independent of
Fn = σ{Xj , 1 ≤ j ≤ n}, the σ-field generated by {Xj}nj=1.

Theorem 4.13

Let {Xn}n≥1 be a sequence of m-dependent rv.s with uniformly bounded

variance s.t. σn
mn1/3

M
=

√
Var(

∑n
i=1 Xi )

mn1/3 →∞ as n→∞ and m = o(n1/3).
Then

Sn − E (Sn)

σn

d→ N(0, 1).

A CLT for more general dependent data, the so-called mixing dependent
sequence, will be discussed later.
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Proof: Use of Blocking Technique

Proof: As {Xn}n≥1 has uniformly bounded variance. ∃M s.t.
supn|Var(Xn)| ≤ M.

WLOG, assume E (Xj) = 0.

We block the whole sequence by larger blocks followed by small blocks.

Let k = [n1/3] be the size of large blocks, m be the size of small blocks

p = [ n
k+m ] = O(n2/3) be the number of blocks, Bj = j(k + m),
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Lay out of the Blocks

Y1 = X1 + · · ·+ Xk , Z1 = Xk+1 + · · ·+ Xk+m

· · ·
Yp = XBp−1+1 + · · ·+ XBj−1+k , Zp = XBp−1+k+1 + · · ·+ XBp

Rp = XBp + · · ·+ Xn the residual block.

As k >> m when n is large enough, then {Yj}pj=1 and {Zj}pj=1 are indpt
rvs as they are at least m-apart.

Song Xi Chen, Xiaojun Song (Slides) Asymptotic Statistics July 13, 2021 94 / 181



The Detailed Proof ∗∗

Now, we have:

Sn =

p∑
j=1

Yj +

p∑
j=1

Zj +

n−p(k+m)∑
l=1

XBl+l := S ′n + S ′′n + S ′′′n (20)

As sup var(Xj) ≤ M, |E(XjXl)| ≤ M, and

var(S ′′′n ) = E(S ′′′n )2 =

∣∣∣∣∣∣
n−p(k+m)∑

j,l=1

E
(
Xp(k+m)+jXp(k+m)+l

)∣∣∣∣∣∣
≤ (n − p(k + m))2M ≤ (k + m)2M

S ′′′n = Op(
√

var(S ′′′n )) = Op((n − p(k + m))) = Op(k + m) = Op(n1/3) (21)
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The Detailed Proof ∗∗

Similarly,

EZ 2
j = E

 m∑
j=1

XBj−1+k+j

2

≤ m2M

And,
var(S ′′n ) ≤ pm2M, S ′′n = Op(p1/2m) = Op(n1/3m)

As σn/(mn1/3) → ∞, we have:

S ′′n
σn

=
S ′′n

mn1/3
× mn1/3

σn
= op(1)

Besides, since k = O(n1/3), from (21), S ′′′n /σn = op(1). Now,

Sn

σn
=

S ′n
σn

+
S ′′n
σn

+
S ′′′n
σn

=
σ′n
σn

S ′n
σ′n

+ op(1) (22)

It remains to prove σ′2n /σ
2
n → 1 and S ′n/σ

′
n

d.−−→ N(0, 1).
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The Detailed Proof ∗∗

σ′2n /σ
2
n → 1:

ES2
n = E(S ′n)2 + E(S ′′n )2 + E(S ′′′n )2 + 2E (S ′nS ′′n ) + 2E (S ′′n S ′′′n ) + 2E (S ′′′n S ′n)

Then,∣∣ES2
n − E(S ′n)2

∣∣ ≤ ∣∣E(S ′′n )2 + E(S ′′′n )2 + 2E (S ′nS ′′n ) + 2E (S ′′n S ′′′n ) + 2E (S ′′′n S ′n)
∣∣

≤ pm2M2 + (k + m)2M2 + 4p(mM)2 + 2m(k + m)M2

Here we perceive that:

E (S ′nS ′′n ) =

p∑
j,l=1

cov(Yj ,Zl)
indep.

=====

p∑
j=1

[cov(Yj ,Zj) + cov(Yj ,Zj−1)] ≤ 2p(mM)2

and, similarly,

E (S ′′n S ′′′n ) ≤ m(k + m)M2, E (S ′′′n S ′n) = cov (S ′′n ,S
′′′
n ) = 0
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Therefore,∣∣∣∣1− σ′2n
σ2
n

∣∣∣∣ ≤ 2pm2M2 + 2(k + m)2M2

σ2
n

= O

(
m2n2/3

σ2
n

)
→ 0

Hence, σ′2n
σ2
n
→ 1.

S ′n/σ
′
n

d .−−→ N(0, 1):

We use truncation method. As k = [n1/3], let Ynj = Yj , then
{Ynj , 1 ≤ j ≤ p} is double array, |Ynj | ≤ km = O(n1/3m) = o(σ′n), and

1

σ′2n

p∑
j=1

E
[
Y 2
njI(|Ynj | ≥ ησ′n)

]
≤ k2m2

σ′2n

p∑
j=1

P(|Ynj | > ησ′n)

≤ k2m2

σ′2n

∑p
j=1 var(Ynj)

η2σ′2n
≤ k2m2

η2σ′2n
−→ 0

as (km)/σ′n → 0, which implies the LC holds, then S ′n/σ
′
n

d .−−→ N(0, 1)
from Theorem 4.10.
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Cramér-Wold device

The device allows the issue of convergence of multivariate distribution to
be reduced to that of univariate ones.

Theorem 4.14 (see Serfling (1988, p18))

A sequence of random vectors X n in Rd converges in distribution to the
random vector X if and only if for any linear combination of the
component of X n converges in distribution to the same linear combination
of the component of X as n→∞, i.e.,

Xn
d→ X ⇔ aTXn

d→ aTX , ∀a ∈ Rd .

Levy’s theorem implies that weak convergence of vectors is equivalent to
weak convergence of linear combinations.

Song Xi Chen, Xiaojun Song (Slides) Asymptotic Statistics July 13, 2021 99 / 181



Proof of Cramér-Wold

”⇐=” Let X n = (Xn1, . . . ,Xnd)T , X = (X1, . . . ,Xd)T have a
characteristic function φn and φ respectively. As for all
c = (c1, c2, . . . , cd)T

c1Xn1 + · · ·+ ckXnd
d−→ c1X1 + · · ·+ cdXd . (23)

The characteristic function of c1Xn1 + · · ·+ cdXnd is

φn(tc1, · · · , tcd) = E (e it(c1Xn1+···+cdXnd )).

The characteristic function of λ1X1 + · · ·+ λdXd is φ(tc1, · · · , tcd).
Choose t = 1, then from (23)

lim
n→∞

φn(c1, · · · , cd) = φ(c1, · · · , cd)

implying X n
d−→ X .

The ”=⇒” is obvious by mapping.
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Multivariate CLT

The Cramér-Wold device provide another approach to show Multivariate
CLT.

Theorem 4.15

Let X 1,X 2, . . . be i.i.d. random vectors with mean µ and finite covariance
matrix, Σ. Let X n =

∑n
i=1 X i/n, then

√
n
(
X n − µ

) d→ Nd(0,Σ).

by letting Y n :=
√

n
(
X n − µ

)
, so

Y n
d→ Y iff tTY n

d→ tTY for all t ∈ Rd .
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Chapter 4: Weakly Dependent Data

Let Z1, . . . ,Zn ∈ Rd , where d is the dimension of Zi , is the equally
sampled time series, i.e. daily, weekly, or yearly data.

Strictly Stationary: for any integers l and m,

(Zi1 , . . . ,Zim)> and (Zi1+l , . . . ,Zim+l)
>

have the same distribution (strong shift invariance).

Weak Stationary (or Second Order Stationary):

E(Zi ) = E(Zi+l), var(Zi ) = var(Zi+l),

cov(Zi ,Zj) = cov(Zi+l ,Zj+l)

(weak shift invariance).

Ways to make a time series stationary: difference, square root, etc.
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Linear Time Series Models

Definition 5.1 (ARMA models)

The sequence {Zi}i∈Z is said to be an ARMA(p, q) if {Zi} is weakly
stationary and for any t,

Zt − θ1Zt−1 − · · · − θpZt−p = εt − η1εt−1 − · · · − ηqεt−q

where {εt} is an independent white noise process, defined as WN(0, σ2).
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ARMA models

Let θ and η be p-th and q-th degree polynomials defined as:

θ(z) = 1− θ1z − · · · − θpzp

η(z) = 1− η1z − · · · − ηqzq

Let B be the backward shift operator such that B jZt = Zt−j .

Definition 5.2

An ARMA(p, q) process {Zt} is said to be causal if there exists {ψj}∞j=0

such that
∞∑
j=0

|ψj | <∞, Zt =
∞∑
j=0

ψjεt−j
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ARMA models

Theorem 5.3

Let {Zt} be an ARMA(p, q) : θ(B)Zt = η(B)εt . If θ(z) and η(z) have no
common zero roots, then {Zt} is causal iff

θ(z) 6= 0, ∀z ∈ C, |z | ≤ 1

and the coefficients {ψj} are determined by ψ(z) = η(z)/θ(z).

Linear Process:

Zt =
∞∑

j=−∞
ψjεt−j , εt i.i.d. F (0, σ2)

ARMA process under certain conditions are special type of linear process!
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ARCH(p): Auto-Regression Conditionally Heterogeneity

Model:

Zt = m(~Zt,p) + σ(~Zt,p)εt , ~Zt,p = (Zt−1, · · · ,Zt−p)>

it generalizes AR(p):

Zt = θ0 + θ1Zt−1 + · · ·+ θpZt−p + εt , εt ∼ WN(0, σ2)

in two aspects:

(i) From linear to non-linear conditional mean function.

(ii) From constant conditional variance to a function.

ARCH models (or non-linear time series models) in general are not
necessarily stationary, but some conditions can guarantee they are
”asymptotic stationary” (stationary after pre-burning the models for a
period of ”long” time). See Gouriéroux1 for reference.

1Christian Gouriéroux. ARCH models and financial applications. Springer Science & Business Media, 2012.
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Mixing Coefficients: measures of dependence

Let Z1, · · · ,Zt , · · · be a strictly stationary process and Fm
l be the sigma field

generated by {Zi}mi=l , where m ≥ l are positive integers.

(i) α-mixing (or strong mixing) coefficient:

α(k) = sup
B∈F t

−∞,C∈F∞t+k

|P(B ∩ C )− P(B)P(C )|, k ≥ 1

*(ii) β-mixing or absolute regularity coefficient:

β(k) = E sup
c∈F∞t+k

|P(C )− P(C |F t
−∞)|

(iii) φ-mixing:
φ(k) = sup

B∈F t
−∞,C∈F∞t+k

|P(C )− P(C |B)|
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Mixing Coefficients: measures of dependence

(iv) ρ-mixing:

ρ(k) = sup
X∈L2(F t

−∞),Y∈L2(F∞t+k )

|corr(X ,Y )|

= sup
X∈L2(F t

−∞),Y∈L2(F∞t+k )

∣∣∣∣∣ cov(X ,Y )√
var(X ) var(Y )

∣∣∣∣∣
where L2(F) is the set of all r.vs defined on F which have finite
second moments, i.e. ∀X ∈ L2(F), EX 2 <∞.
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Relationship between these mixing coefficients

2α(k) ≤ β(k) ≤ φ(k), 4α(k) ≤ ρ(k) ≤ 2φ1/2(k)

The process {Zt}t∈Z is said to be α-mixing if lim
k→∞

α(k) = 0. Similarly,

φ-mixing process can be defined as lim
k→∞

φ(k) = 0, etc.

Remark 17

Mixings are different descriptions of dependence between events in two
sigma fields (F t

−∞, F∞t+k). When the time gap between them goes to
infinity, i.e. k →∞, mixings means asymptotic independence.
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Relationship between these mixing coefficients

The inequality between different mixing coefficients means that,

φ-mixing =⇒ β-mixing
⇓ ⇓

ρ-mixing =⇒ α-mixing

So α-mixing is the weakest mixing coefficient, but ironically has been
called strong mixing.
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When a linear process is mixing?

For a linear causal process Zt =
∑∞

j=−∞ ψjεt−j , {εt} i.i.d. F (0, σ2).

Gorodetskii2 shows that {Zk} is α-mixing under certain conditions, and
establish the rate of α(k).

Pham T. D. and Tran L. T.3 show that if ψj = O(r j) for 0 < r < 1 when
j →∞, then the process is geometric α-mixing, i.e. there exists
C , ρ ∈ [0, 1) such that α(k) ≤ Cρk .

2VV Gorodetskii. “On the strong mixing properties for linear processes”. In: Theory of Probability and its Applications 22
(1977), pp. 441–413.

3Tuan D Pham and Lanh T Tran. “Some mixing properties of time series models”. In: Stochastic processes and their
applications 19.2 (1985), pp. 297–303.
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Inequalities

Lemma 5.4 (Billingley’s Inequality)

If {Zi} is α-mixing (NOT necessarily stationary), X ∈ F t
−∞ and

Y ∈ F∞t+k , |X | ≤ C1, |Y | ≤ C2, then,

| cov(X ,Y )| ≤ 4C1C2α(k)
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Proof

Since,

| cov(X ,Y )| = |E(XY )− E(X )E(Y )| =
∣∣E [X {E(Y |F t

−∞)− EY
}]∣∣

≤ C1E
∣∣E(Y |F t

−∞)− EY
∣∣

= C1E
[
ξ
(
E(Y |F t

−∞)− EY
)]

where ξ = sgn(E(Y |F t
−∞)− EY ) ∈ F t

−∞. Thus,

| cov(X ,Y )| ≤ C1|E(ξY )− EξEY | = C1| cov(ξ,Y )| (24)

By using the same approach, we have,

| cov(ξ,Y )| ≤ C2|E(ξη)− EξEη| (25)

where η = sgn(E(ξ|F∞t+k)− Eξ) ∈ F∞t+k .

Song Xi Chen, Xiaojun Song (Slides) Asymptotic Statistics July 13, 2021 113 / 181



Proof

Let:

A = {ξ = 1}, B = {η = 1}
AC = {ξ = −1}, BC = {η = −1}

Clearly, A,AC ∈ F t
−∞ and B,BC ∈ F∞t+k . Then,

|E(ξη)− EξEη| =
∣∣P(AB) + P(ACBC )− P(ACB)− P(ABC )

−(P(A)− P(AC ))(P(B)− P(BC ))
∣∣ ≤ 4α(k)

(26)

And the lemma is proved by combining (24), (25), and (26).
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Inequalities

Lemma 5.5

If {Zi} is α-mixing (NOT necessarily stationary), X ∈ F t
−∞ and

Y ∈ F∞t+k , E|X |p <∞ for some p > 1 and |Y | ≤ C , then

| cov(X ,Y )| ≤ 6C‖X‖pα1/q(k)

where
1

p
+

1

q
= 1 and ‖X‖p = (E|X |p)1/p.
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Proof

For some M > 0, let XM = X I(|X | ≤ M), X ′M = X − XM = X I(|X | > M). Then
X = XM + X ′M , and

| cov(X ,Y )| = |cov(XM ,Y ) + cov(X ′M ,Y )| ≤ | cov(XM ,Y )|+ | cov(X ′M ,Y )|

From Lemma 5.4,
| cov(XM ,Y )| ≤ 4CMα(k) (27)

On the other hand, note that,

E|X ′M | =

∫
|X |>M

|x |dF (x) ≤
∫
|X |>M

|x |
(
|x |
M

)p−1

dF (x)

i.e. E|X ′M | ≤ M−p+1E|X |p.
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Proof

Thus,

| cov(X ′M ,Y )| = |E(X ′MY )− EX ′MEY | ≤ E|X ′MY |+ CE|X ′M |
≤ 2CE|X ′M | ≤ 2CM−p+1E|X |p

(28)

Now, choose
M = ‖X‖p{α(k)}−1/p

and from (27) and (28), we prove the lemma.
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Inequalities

Lemma 5.6 (Rio’s Inequality)

Let X and Y be two integrable a real-valued r.vs and let
QX (u) = inf{t : P(|X | > t) ≤ u} be the quantile function of |X |. Then if
QXQY us integrable over (0, 1). We have:

| cov(X ,Y )| ≤ 2

∫ 2α

0
QX (u)QY (u)du

where α = α(σ(X ), σ(Y )) is the α-mixing coefficient between sigma fields
σ(X ) and σ(Y ).

a lim
c→∞

E {|X |I(|X | > c)} = 0
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Proof

Denote X + = 0 ∨ X and X− = 0 ∨ (−X ), then

cov(X ,Y ) = cov(X +,Y +) + cov(X−,Y−)

− cov(X−,Y +)− cov(X +,Y−)
(29)

Note that:

cov
(
X +,Y +

)
=

∫
R2

+

[P(X > u,Y > v)− P(X > u)P(Y > v)]dudv

Recall the definition of α, we have

cov
(
X +,Y +

)
≤
∫
R2

+

inf(α,P(X > u),P(Y > v))dudv (30)
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Proof

Now apply (29), (30) ,and the elementary inequality

(α ∧ a ∧ c) + (α ∧ a ∧ d) + (α ∧ b ∧ c) + (α ∧ b ∧ d)

≤ 2[(2α) ∧ (a + b) ∧ (c + d)]

to a = P(X > u), b = P(−X > u), c = P(Y > v), d = P(−Y > v), we get

|Cov(X ,Y )| ≤ 2

∫
R2

+

inf(2α,P(|X | > u),P(|Y | > v)dudv =: I

Then we only need to show,

I = 2

∫ 2α

0

QX (u)QY (u)du (31)
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Proof

Note the form of I , define a bivariate r.v. (Z ,T ),

(Z ,T ) = (0, 0)I(U ≥ 2α) + (QX (U),QY (U)) I(U < 2α)

where U is a uniform distributed r.v. over [0, 1]. So for any u, v > 0,

{Z > u,T > v} = {U < 2α,U < P(|X | > u),U < P(|Y | > v)}

by calculating the true integral value,∫ 2α

0

QX (u)QY (u)du = E(ZT ) =

∫
R2

+

P(Z > u,T > v)dudv

=

∫
R2

+

inf(2α,P(|X | > u),P(|Y | > v))dudv

which entails (31) and the proof is thus complete.
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Inequalities

Lemma 5.7 (Davydov’s Inequality)

Let X and Y be two real r.vs such that X ∈ Lq(F t
−∞), Y ∈ Lr (F∞t+k)

where q > 1, r > 1 and
1

q
+

1

r
= 1− 1

p
, then

| cov(X ,Y )| ≤ 2p(2α(k))1/p‖X‖q‖Y ‖r
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Proof

(i) Suppose first that q and r are finite. Then Markov’s inequality yields,

P

(
|X | > ‖X‖q

u1/q

)
≤ E|X |q(
‖X‖q/u1/q

)q = u , 0 < u ≤ 1

which implies,

QX (u) ≤ ‖X‖q
u1/q

, 0 < u ≤ 1

similarly, QY (u) ≤ ‖Y ‖r/u1/r . Using Rio’s inequality,

| cov(X ,Y )| ≤ 2

∫ 2α(k)

0

‖X‖q
u1/q

‖Y ‖r
u1/r

du

= 2‖X‖q‖Y ‖r
∫ 2α(k)

0

u
1
p−1du

(
1

p
+

1

q
+

1

r
= 1

)
= 2p(2α(k))1/p‖X‖q‖Y ‖r
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Proof

(ii) If r = +∞, q is finite, then 1
q + 1

p = 1. Note that QY (u) ≤ QY (0) = ‖Y ‖∞
:= sup |Y |. This is because,

{t |P(|Y | > t) = 0} ⊂ {t |P(|Y | > t) ≤ u}, ∀u ∈ [0, 1]

=⇒ inf{t |P(|Y | > t) = 0} ≥ inf{t |P(|Y | > t) ≤ u}
=⇒ QY (u) ≤ QY (0)

Also, clearly inf{t |P(|Y | > t) = 0} = ‖Y ‖∞. Use Rio’s inequality again,

| cov(X ,Y )| ≤ 2

∫ 2α(k)

0

‖X‖q
u1/q

‖Y ‖∞du

= 2‖X‖q‖Y ‖∞
∫ 2α(k)

0

u
1
p−1du

= 2p(2α(k))1/p‖X‖q‖Y ‖∞

which is similar to, but not exactly the same as Lemma 5.5.
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Proof

(iii) If r = +∞ and q = +∞, then p = 1. Similarly, use Rio’s inequality
again,

| cov(X ,Y )| ≤ 2× 2

∫ 2α(k)

0
‖X‖∞‖Y ‖∞du = 4‖X‖∞‖Y ‖∞α(k)

which is the same as Lemma 5.4. Now, we have completed all the proof of
this lemma.
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Weakly Dependent Stationary Process

Suppose {Xi} be a weakly stationary process with finite second moments.
Let γ(j) = cov(Xi ,Xi+j).

Definition 5.8

The process is said to be weakly dependent if
∞∑
k=0

|γ(k)| <∞, or it would

be said to be a long memory process.
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Weakly Dependent Stationary Process

Let α(k) be the strong-mixing coefficient defined on the sigma fields generated by
{Xi}i∈Z.

From Lemma 5.7 (r = q), if E|Xi |q <∞ for q > 2, and
∞∑
k=0

α1/p(k) <∞ for

p =
q

q − 2
, then

∞∑
k=0

|γ(k)| ≤ 2p‖X‖2
q

∞∑
k=0

α1/p(k) <∞

Thus, this process is weakly dependent (short-memory). In particular, if
α(k) ≤ Cρk , i.e. geometric strong mixing, then

∞∑
k=0

α1/p(k) ≤ C
∞∑
k=0

ρk/p =
C

1− ρ1/p
<∞.
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Weakly Stationary Process

Remark 18

In general, to ensure
∞∑
k=0

α1/p(k) <∞, we require α1/p(k) ∼ k−(1+η), i.e.

α(k) ∼ k−p(1+η) for η > 0 when k is sufficiently large, which implies
α(k)→ 0 as k →∞ sufficiently fast.

Remark 19

Note that geometric strong mixing (GSM) means α(k) ≤ Cρk = Ce−βk ,
which entails α(k)→ 0 at exponential rate.
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Spectral Density

Define:

γ(h) =

∫ π

−π
e ihvdF (v) =

∫ π

−π
e ihv f (v)dv

Then by Laplace transformation:

f (λ) =
1

2π

∞∑
n=−∞

e−inλγ(n)

Theorem 5.9

If
∑∞

k=−∞ |γ(k)| <∞, then {Xn} has spectral density f , and we have∑∞
h=∞ γ(h) = 2πf (0).
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CLT for strongly mixing processes

Lemma 5.10

Let {Xt}t∈Z be a zero-mean real-valued weakly stationary process such
that for some r > 2,

sup
t∈Z

E |Xt |r <∞,
∑
k≥1

α(k)1− 2
r < +∞

then the series
∑

k∈Z γ(k) is absolutely convergent, has a nonnegative
sum σ2 and,

n var(Sn/n) −→ σ2 (32)

where γ(k) = cov(X0,Xk).
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Proof

First we study the series
∑

k∈Z γ(k), by using Lemma 5.7 with q = r and
1
p = 1− 2

r , we get

|γ(k)| ≤ 2r

r − 2

(
E |X0|r

)2/r
(2α(k))1−2/r

which proves the absolute convergence of the series since
∑

k≥1 α(k)1−2/r < +∞.
Now clearly,

n var

(
Sn

n

)
= n−1

∑
0≤s,t≤n−1

cov (Xs ,Xt) =
n−1∑

k=−(n−1)

(
1− |k|

n

)
γ(k)

due to {Xt} being weakly stationary, thus,

lim
n→∞

n var

(
Sn

n

)
= σ2 ≥ 0

and the theorem is thus established.
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CLT for strongly mixing processes

Theorem 5.11

Let {Xt}t∈Z be a zero-mean real-valued strictly stationary process such
that for some r > 2 and some β > 0,

E|Xt |r <∞, α(k) ≤ ak−β

where a is a postive constant and β > r/(r − 2). Then if
σ2 =

∑∞
k=−∞ γ(k) > 0, we have

Sn

σ
√

n

d−−→ N(0, 1)

The proof can be seen in Theorem 1.7 of D. Bosq’s book4.

4Denis Bosq. Nonparametric statistics for stochastic processes: estimation and prediction. Vol. 110. Springer Science &
Business Media, 2012.
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Chapter 5: Delta Method

Suppose we have a sequence of estimators {Tn}n≥1 on Rk for a parameter

θ ∈ Rk .

For the φ(θ), the parameter of interest, considering convergence of
φ(Tn) to φ(θ), where φ : Rk → Rm.

From Mapping, Tn
p→ θ ⇒ φ(Tn)

p→ φ(θ), if φ was continuous at θ.

Does
√

n(φ(Tn)− φ(θ)) have an asymptotic distribution, if suppose
√

n(Tn − θ)
d→ T ?

Is the convergence in distribution persevered under smooth
transformation?
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The Derivative of Vector-valued Functions

Recall that φ(·) is differentiable at θ if there exists a linear map (matrix)
φ′θ : Rk 7→ Rm such that

φ(θ + h)− φ(θ) := φ′(θ)h + R(h)

= φ′(θ)h + o(‖h‖), h→ 0.

Define φ′θ(h) := φ′(θ)h.

Derivative map (Jacobian matrix)

The derivative map h 7→ φ′θ(h) is matrix multiplication by the matrix

φ
′
(θ) , φ′θ =


∂φ1
∂θ1

(θ) · · · ∂φ1
∂θk

(θ)
...

...
∂φm
∂θ1

(θ) · · · ∂φm
∂θk

(θ)

 =

(
∂φi (θ)

∂θj

)
m×k

.

Remark 20

If m = 1, k > 1, the derivative map is called the gradient of the function.
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Main Result of Delta Method

Theorem 6.1 (First Order Delta Method)

If φ differentiable at θ, φ′(θ) 6= 0, and rn(Tn − θ)
d→ T for a deterministic

sequence of {rn}, satisfied rn →∞, then:

(i) rn (φ(Tn)− φ(θ))− φ′(θ) (rn(Tn − θ))
p→ 0;

(ii) rn (φ(Tn)− φ(θ))
d→ φ′(θ)T .

The proof: (i)

Since rn(Tn − θ)
d→ T , then Tn − θ

p→ 0 by stochastic boundedness.

By the differentiability of φ at θ, then

φ(θ + h)− φ(θ)− φ′(θ)h := R(h) = o (‖h‖) .
Replace the h by Tn − θ, multiply rn to get

rn[φ (Tn)− φ(θ)− φ′θ (Tn − θ)] = oP (rn ‖Tn − θ‖) = oP(1).

by Lemma of Stochastic Plug-in (since Tn − θ
p→ 0).
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The proof: (ii)

Matrix multiplication is continuous, so φ′θ (rn (Tn − θ))
d→ φ′θ(T ) by

the continuous-mapping theorem.

Apply Slutsky’s lemma to conclude that

rn (φ(Tn)− φ(θ))
d→ φ′(θ)T

which has the same weak limit as φ′θ (rn (Tn − θ)).

Example: Normal delta method

Let Tn be a sequence of statistics such that

√
n (Tn − θ)

d→ N
(
0, σ2(θ)

)
Let g : R→ R be once differentiable at θ with g ′(θ) 6= 0. Then

√
n [g (Tn)− g(θ)]

d→ N(0, [g ′(θ)]2σ2(θ))
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High Order Delta Method: what if φ′(θ) = 0?

First Order Delta Method is largely based on Taylor’s expansions with
φ‘(θ) 6= 0. If φ′(θ) = 0 but φ′′(θ) 6= 0, we have

φ(Tn) = φ(θ) +
1

2
φ′′(θ)(Tn − θ)2 + · · · .

Then

n (φ(Tn)− φ(θ)) =
1

2
φ′′(θ)

[√
n(Tn − θ)

]2 d→ · · ·

If
√

nX̄n
d→ N(0, 1), then nφ(X̄n)

d→ 1
2φ
′′(θ)χ2

1.

Theorem 6.2

Suppose φ be a univ. m times differentiable at θ with φ(m)(θ) 6= 0,
φ(j)(θ) = 0, j < m, then:

rmn (φ(Tn)− φ(θ))
1
m!φ

(m)(θ)

d→ Tm.

A multivariable version of this theorem is available in Serfling P124.
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Examples: 2ed Delta Method

1 Suppose X1, . . . ,Xn are id with mean µ and known variance σ2, and
we want to test H0 : µ = 0. Under the null hypothesis H0 : µ = 0, the
following statistic

T (X ) := nX
2
n/σ

2 d→ [N(0, 1)]2 = χ2
1.

2 Suppose that
√

nX n converges in law to a standard normal
distribution. Now consider the limiting behavior of cos(X n).

Because the derivative of cos(x) is zero at x = 0, we still use the proof
of First Order Delta Method. It yields that

√
n(cos(X n)− 1)

d→ δ0

which implies that
√

n(cos(X n)− 1)
P→ δ0.

Thus, it should be concluded that
√

n is not the right norming rate for
the random sequence cos(X n)− 1. 2ed Order Delta Method

cos X − cos 0 = (X − 0)0 + 1
2 (X − 0)2(cos x)′′|x=0 + · · ·

implies

−2n(cos X − 1)
d→ χ2

1.
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Example: Variance

Let X1, . . . ,Xn i.i.d. F with finite 4-th moments. Let αi = EX i
1 for i = 1, 2, 3, 4

and mnl = n−1
∑n

j=1 X l
j . Then,

Sn = n−1
n∑

i=1

(Xi − X̄ )2 = n−1
n∑

i=1

X 2
i − X̄ 2 = φ(mn1,mn2)

where φ(x1, x2) = x2 − x2
1 . From MCLT,

√
n

[(
mn1

mn2

)
−
(
α1

α2

)]
d.−−→ N

(
0, var

(
X1

X 2
1

))
and φ′(α1, α2) = (−2α1, 1).Hence,

√
n(Sn − σ2) =

√
n(φ(mn1,mn2)− φ(α1, α2))

d.−−→ (−2α1, 1)N

(
0, var

(
X1

X 2
1

))
= N(0, c4 − c2

2 )

where we use the fact that:

(−2α1, 1) var

(
X1

X 2
1

)(
−2α1

1

)
= E(X1 − α1)4 −

(
E(X1 − α1)2

)2
= c4 − c2

2
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Example: Standard Deviation

Considering the unbiased estimator:

Sn−1 =
1

n − 1

n∑
i=1

(Xi − X̄ )2 =
n

n − 1
Sn

So,

√
n(Sn−1 − σ2) =

√
n(

n

n − 1
Sn − σ2)

=
√

n

(
Sn − σ2 +

(
n

n − 1
− 1

)
Sn

)
=
√

n(Sn − σ2) +
√

n

(
n

n − 1
− 1

)
Sn

d.−−→ N(0, c4 − c2
2 )

(√
n
(

n
n−1 − 1

)
Sn = op(1)

)
Furthermore, S

1/2
n =

√
Sn = φ(Sn), φ(x) =

√
x , and φ′(x) = 1

2 x−1/2,

√
n(S1/2

n − σ)
d.−−→ N

(
0,

c4 − c2
2

4σ2

)
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More Examples

If Xn is AN(µ, σ2
n) and σn → 0. Then,

(i) X 2
n is AN(µ2, 4µ2σ2

n) for µ 6= 0.

(ii)
1

Xn
is AN

(
µ−1,

σ2
n

µ4

)
for µ 6= 0.

(iii) eXn is AN(eµ, e2µσ2
n) for any µ.

(iv) log |Xn| is AN(log |µ|, µ−2σ2
n) if µ 6= 0; log |σ−1

n Xn|
d .−−→ log |N(0, 1)|

for µ = 0.
(v) Suppose X1, . . . ,Xn i.i.d. F on Rp with (µ,Σ). Let

θ = µ>µ, θ̂ = X̄>X̄ = φ(X̄ )

If µ 6= 0, φ′(µ) = 2µ>, φ′′(µ) = 2Ip. As
√

n(X̄ − µ)
d .−−→ Np(0,Σ).

So,
√

n
(

X̄>X̄ − µ>µ
)

d .−−→ 2µ>Np(0,Σ) = N(0, 4µ>Σµ)
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Example: weighted χ2
1 distribution

If µ = 0, µ>Σµ = 0, the above display
d .−−→ 0 is not useful. In fact, as

√
nX̄

d .−−→ Np(0,Σ),

nX̄>X̄
d .−−→ N>p (0,Σ)Np(0,Σ)

d .
=== Z>Σ1/2Σ1/2Z = Z>ΣZ

where Z ∼ N(0, Ip). Suppose

Σ = U> diag(λ1, . . . , λp)U, Z̃ = UZ ∼ Np(0, Ip)

Then,

Z>ΣZ
d .

===

p∑
i=1

λi Z̃
2
i

d .
===

p∑
i=1

λiχ
2
1i

where {χ2
1i}

p
i=1 i.i.d. χ2

1.

So nX̄>X̄ converges to a weighted χ2
1 distribution.

Thus nX̄>X̄ = Op (1) if µ = 0, and X̄>X̄ − µ>µ = Op

(
1√
n

)
if µ 6= 0.
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Chi-Square Test for Variance

Suppose X1, . . . ,Xn i.i.d. F with EX 4
1 <∞.

H0 : σ2 ≤ 1 vs H1 : σ2 > 1

Denote Θ0 = {0 < σ2 ≤ 1} and Θ1 = {σ > 1}. If F = N(µ, σ2), nSn

σ2 ∼ χ2
n−1.

Test statistic for H0 : σ2 ≤ 1 is nSn by setting σ2 = 1, and we reject H0 if
nSn > χ2

n−1,α. The size of this test is

PΘ0

(
nSn > χ2

n−1,α |σ2 ∈ Θ0

)
= PΘ0

(
nSn

σ2
>

1

σ2
χ2
n−1,α

∣∣∣∣ σ2 ≤ 1

)
≤ P(χ2

n−1 > χ2
n−1,α) = α

So the size ≤ α with the maximum size at σ2 = 1 equals to α.
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Chi-Square Test for Variance

If F 6= Normal, the excessive kurtosis:

κ =
E(X − µ)4

σ4
− 3 6= 0

From CLT and the fact that χ2
n−1 =

∑n−1
i=1 Z 2

i for {Zi}n−1
i=1 i.i.d. N(0, 1). Then,

χ2
n−1 − (n − 1)√

2(n − 1)

d.−−→ N(0, 1) (33)

From the previous example, we know that:

√
n

(
Sn

σ2
− 1

)
d.−−→ N (0, κ− 1) 6= N(0, 2)

And from (33),

P

(
χ2
n−1 − (n − 1)√

2(n − 1)
≥ Zα

)
−→ P(N(0, 1) ≥ Zα) = α
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Chi-Square Test for Variance

As P(χ2
n−1 > χ2

n−1,α) = α, we have χ2
n−1,α ≈ (n − 1) + Zα

√
2(n − 1). i.e.

lim
n→∞

χ2
n−1,α − (n − 1)√

2(n − 1)
= Zα

Consequently, the level of the Chi-Square Test is:

Pσ2=1

(
nSn

σ2
> χ2

n−1,α

)
= Pσ2=1

(
√

n

(
Sn

σ2
− 1

)
>
χ2
n−1,α − n
√

n

)

≈ Pσ2=1

(
√

n

(
Sn

σ2
− 1

)
>

(n − 1) + Zα
√

2(n − 1)− n√
n

)

→ P(N(0, κ+ 2) >
√

2Zα) = 1− Φ

( √
2Zα√
κ+ 2

)
For heavy-tail F , κ > 0, so that,

1− Φ

( √
2Zα√
κ+ 2

)
> 1− Φ(Zα) = α
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Chi-Square Test for Variance

Power of this test:

Pσ2>1

(
nSn

σ2
> χ2

n−1,α

)
= Pσ2>1

(
√

n

(
Sn

σ2
− 1

)
>
σ−2χ2

n−1,α − n
√

n

)

→ 1− P

(
N(0, κ+ 2) >

σ−2{(n − 1) + Zα
√

2(n − 1)} − n√
n

)

= 1− Φ

(
(σ−2 − 1)

√
n√

κ+ 2
− σ−2√

n(κ+ 2)
+

√
2Zα√
κ+ 2

√
n − 1

n

)

≈ 1− Φ

(
(σ−2 − 1)

√
n√

κ+ 2
+

√
2√

κ+ 2
Zα

)
−→ 1

So the power → 1 as n→∞, the test is consistent.
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Multinominal Vectors and χ2 statistic

Let (n1, · · · , nK ) be multinominal (n; p1, · · · , pK ) with each pi > 0. Then

Xn =
√

n
(n1

n
− p1, · · · ,

nK

n
− pK

)
:= (Xn1, · · · ,XnK )

d.−−→ N(0,Σ)

where Σ = (σij) with

σij =

{
pi (1− pj) i = j
−pipj i 6= j

A test statistic for goodness-of-fit is:

Tn =
K∑
i=1

(ni − npi )
2

npi
= n

K∑
i=1

1

pi

(ni

n
− pi

)2

=
K∑
i=1

1

pi
X 2
ni = X>n CXn

where C = diag
(
p−1

1 , · · · , p−1
K

)
.
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Multinominal Vectors and χ2 statistic

By mapping theorem,

Tn
d .−−→ Z>Σ1/2C Σ1/2Z

d .
=== χ2

n−1

In fact, we can show that A = Σ1/2C Σ1/2 is an idempotent:

σij = pi (δij − pj), C Σ = (p−1
i σij) = (δij − pj)

(C Σ)2 =

(
K∑
l=1

(δil − pl)(δlj − pj)

)
= (δij − pj) = C Σ

As a result, C Σ is an idempotent, so is A, which entails:

tr
(

Σ1/2C Σ1/2
)

= tr(C Σ) = n − 1
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Wald Test

Suppose X1, · · · ,Xn i.i.d. F on Rp with µ and Σ > 0 (p fixed).

H0 : µ = µ0 vs H1 : µ 6= µ0

Wald statistic is:

Wn = n(X̄ − µ0)>S−1
n (X̄ − µ0), Sn =

1

n

n∑
i=1

(Xi − X̄ )(Xi − X̄ )>

From LLN, Sn
p.−−→ Σ, S−1

n
p.−−→ Σ−1. And we note that:

X̄ − µ = Op(n−1/2)
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Wald Test

Hence,

Wn = n(X̄ − µ0)>
(
Σ−1 + S−1

n − Σ−1
)

(X̄ − µ0)

=
√

n(X̄ − µ0)>Σ−1√n(X̄ − µ0)

+
√

n(X̄ − µ0)>
(
S−1
n − Σ−1

)√
n(X̄ − µ0)

=
√

n(X̄ − µ0)>Σ−1√n(X̄ − µ0) + op(1)
d .−−→ χ2

p

as
√

nΣ−1/2(X̄ − µ0)
d .−−→ N(0, Ip).

So Wald test requires H0 if Wn > χ2
p,1−α.
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Variance Stablizing Transform (VST)

Typically, we have various means to obtain,

√
n(Tn − θ)

d .−−→ N
(
0, σ2(θ)

)
where σ2(θ) is the asymptotic variance depending on θ. The asymptotic
CI for θ are:

Tn ± Z1−α/2
σ(θ̂)√

n

So the width of the CIs varies with respect to σ(θ).

The purpose of VST is to transform Tn to φ(Tn) such that

√
n(φ(Tn)− φ(θ))

d .−−→ N(0, c2)

where c > 0 is a constant.
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Variance Stablizing Transform (VST)

From earlier result,

√
n(φ(Tn)− φ(θ))

d .−−→ φ′(θ)N
(
0, σ2(θ)

) d .
=== N

(
0,
(
φ′(θ)

)2
σ2(θ)

)
So φ′(θ)σ(θ) = c , which implies:

φ′(θ) =
c

σ(θ)
, φ(θ) =

∫
dθ

σ(θ)

is the VST.
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Tukey’s Hanging Rootogram

Let X1, · · · ,Xn i.i.d. the pdf f . The Kernel Density Estimator is:

f̂nh(x) =
1

nh

n∑
i=1

K

(
x − Xi

h

)
where K is a symmetric pdf, N(0, 1)’s pdf, for instance. It can be shown
(Serfling5, P114) that:

√
nh(f̂nh(x)− f (x))

d.−−→ N(0, f (x))

provided nhs → 0 and nh→∞ as n→∞. So f̂nh(x) is AN(f (x), f (x)
nh ). By Delta

method and VST:

φ(f ) =

∫
df√

f
= f 1/2

So we do ”root-gram”: f̂
1/2
nh (x) is:

AN(f 1/2(x),
1

4hn
)

5Robert J Serfling. Approximation theorems of mathematical statistics. Vol. 162. John Wiley &amp; Sons, 2009.
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Asymptotically Uniformly Integrable

Definition 6.3 (Uniform Integrability)

A sequence of random variables {Yn}n≥0 is called asymptotic uniformly
integrable (u.i.) if:

lim
M→∞

limsup
n→∞

E
[
|Yn|I{Yn>M}

]
= 0

The uniform integrability is the missing link between convergence in
distribution and convergence of moments.

Theorem 6.4

Let f : Rk → R be measurable and continuous at every point in a set C ,

Xn
d→ X where X takes its values in C . Then Ef (Xn) → Ef (X ) if and

only if the sequence of r.v. f (Xn) is asymptotically u.i.
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Moment Approximation

If Tn has m-th moment exist. Knowing
√

n(Tn − θ)
d→ T ⇒

√
n(φ(Tn)− φ(θ))

d→ φ′(θ)T , if φ′(θ) 6= 0.

Can we approximate Eφ(Tn) by Taylor expansion?

φ(Tn) = φ(θ) + φ‘(θ)(Tn − θ) +
1

2
φ“(θ)(Tn − θ)2 + · · ·

So that, do we have the following equations:

Eφ(Tn) ≈ φ(θ) + φ‘(θ)Bias(Tn) +
1

2
φ“(θ)MSE(Tn)

var (φ(Tn)) ≈ (φ‘(θ))T var(Tn) (φ‘(θ))

We need φ(Tn)− φ(θ) being u.i. If Tn − θ is u.i. and φ is Lipschitz,
then φ(Tn)− φ(θ) is u.i..

See also Sargan, J.D. (1976, Econometrica).
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Chapter 6: Moment Estimator (ME)

Let X1, . . . ,Xn i.i.d. Fθ, where θ0 is the true parameter, f1, . . . , fk be
given known function.

Moments:

Eθfj(X ) =

∫
fj(x)dFθ(x), j = 1, . . . , k

A popular or original choice is: fj(x) = x j . Let f = (f1, . . . , fk)‘.

Definition 7.1 (Moment Estimator (ME))

Match sample moments 1
n

∑n
i=1 f (xi ) with its population counterparts:

Pnf :=
1

n

n∑
i=1

f (xi ) = e(θ) = Eθf (X ) := Pθf
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AN for ME

If e is one to one, then the ME is θ̂n = e−1 (Pnf ).

If e−1 is differential and Eθ0f (X )f T (X ) <∞ (which implies the AN
of Pnf ), then we can have the AN of θ̂n.

Note that: (
e−1(x0)

)′
=
(
e ′(θ0)

)−1
∣∣∣
θ0=e−1(x0)

Theorem 7.2 (CLT for ME)

If e(θ) = Pθf =: Eθf (X ) is 1-1 on an open set Θ ⊂ Rk and is
continuously differentiable at θ0 with non-singular e ′θ and Pθ0‖f ‖

2 <∞,

then θ̂n exists with prob approaching to 1 (wpa 1) and:

√
n(θ̂n − θ0)

d→ N
(

0, [(e ′(θ0))
−1

](Eθ0ff T − Eθ0fEθ0f T )[(e ′(θ0))
−1

]
T
)
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We need the inverse function in the proof.

Lemma 7.3 (The inverse function theorem)

Let A be open in Rn; let g : A 7→ Rk is continuously differentiable at a and
differentiable in a neighborhood of a ∈ A. If the Jacobi matrix

Dg(x) := ∂g(x)/∂xτ

is non-singular at the point a and of A.

Then,

there is a neighborhood U of the point a, such that

g : U 7→ V is one-to-one

for an open set V of Rn;

and there exists an inverse function g−1 : V 7→ U which is
continuously differentiable with

Dg−1(y) := ∂g−1(y)/∂y τ = (Dg(x))−1.
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Proof of Theorem 7.2

Continuous differentiability at θ0 presumes differentiability in a
neighborhood and the continuity of θ 7→ e ′θ;
the nonsingularity of e ′θ implies nonsingularity in a neighborhood.

Therefore, by the inverse function theorem there exist open
neighborhoods U of θ0, and V of Pθ0f such that

e : U 7→ V is a differentiable bijection (one-to-one)
with a differentiable inverse e−1 : V 7→ U.

By the LLN, Pnf ≡ 1
n

∑n
i=1 f (Xi )

a.s.−−→ e(θ0) ∈ V . Since Pnf ∈ V ,

θ̂n := e−1 (Pnf )
a.s.−−→ e−1 (e(θ0)) = θ0

exist with probability tending to 1 by continous mapping theorem.

The CLT guarantees asymptotic normality of the sequence√
n(Pnf − Pθ0f ). The proof is finished by Delta Method.
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Example : ME for the Beta distribution

Let X1,X2, · · ·Xn be a random sample from the Beta distribution which
has a density function f (x ;α, β) = 1

B(α,β) xα−1(1− x)β−1 for x ∈ (0, 1)

where α > 0 and β > 0 are two unknown parameters, and B(α, β) is the
Beta function. Note that

EX k =
1

B(α, β)

∫
xα+k−1(1− x)β−1dx =

B(α + k , β)

B(α, β)

=
Γ(α + k)

Γ(α)

Γ(α + β)

Γ(α + β + k)
=

k−1∏
r=0

α + r

α + β + r
, k = 1, 2, . . .

then the moment estimator can be solved by the following equations:

X =
α

α + β
, X 2 =

α(α + 1)

(α + β)(α + β + 1)

namely, α̂ = (1− X )
[
X (X−1)

X 2−X 2 − 1
]
, β̂ = X

[
X (X−1)

X 2−X 2 − 1
]

is the

solutions.
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Example of Beta distribution: Con.

Let θ = (α, β) be the set of true parameters vector. The moment function is
f (x) = (x , x2)T and the estimated function is:

e(θ) = Eθf (x) =

(
α

α + β
,

α(α + 1)

(α + β)(α + β + 1)

)T

It is very easy to verify that e−1 ∈ C∞(R2
+):

θ̂ = e−1 (Pnf )
p−→ e−1 (Pnf ) = θ.

Note that ∂e(θ)
∂θT

=

[
β

(α+β)2 − α
(α+β)2

−β(α+1)(α+β+1)+αβ(α+β)
(α+β)2(α+β+1)2 −α(α+1)(2α+2β+1)

(α+β)2(α+β+1)2

]
, so

Eθff T − Eθf Eθf T =

[
EX 2 EX 3

EX 3 EX 4

]
−

[
(EX )2

EXEX 2

EXEX 2
(
EX 2

)2

]
.

as a result, we have:

√
n(θ̂n − θ)

d−→ N(0, (
∂e(θ)

∂θT
)−1[Eθff T − Eθf Eθf T ](

∂e(θ)T

∂θ
)−1) =: N(0,Σ)
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Exponential Family

Suppose X1, . . . ,Xn i.i.d. Fθ with density:

pθ(x) = c(θ)h(x) exp{θT t(x)}

Likelihood:

lθ(x) = log pθ(x) = log c(θ) + log h(x) + θT t(x)

Likelihood score:

l̇θ(x) =
ċ(θ)

c(θ)
+ t(x) = t(x)− Eθt(X )

E l̇θ(X ) = 0 implies ċ(θ)/c(θ) = −Eθt(X ).

Hence, MLE are MEs:

1

n

n∑
i=1

t(xi ) = Eθt(X ) = e(θ)
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Exponential Family

Furthermore, if e(θ) is continuous and differentiable and a moment
condition Eθ‖t(X )‖2 <∞ is satisfied, then:

θ̂mle = θ̂me exists wpa 1;

and

√
n
(
θ̂me − θ

)
d→ N

(
0, [
(
e ′(θ)

)−1
]varθ (t(x)) [

(
e ′(θ)

)−1
]
T
)

= N
(
0, I−1

θ

)
Iθ is Fisher Information matrix:

Iθ = var(İθ(X )) = E
(

l̇θ(X )l̇Tθ (X )
)

= −E l̈θ(X )

We can check the equal-sign in the preceding asymptotic distribution.
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Generalized Method of Moments (GMM)

MLE requires parameter model specificates on:

MLE

(i) The full density of w = (x , y), f (w ; η); or

(ii) The conditional density of y given x , f (y |x ; θ); or

(iii) The partial density of yt given xt , ft(yt |xt ; θ) in the context of panel
data.

GMM was developed by Lars Peter Hansen in 1982 as a generalization of
the method of moments. GMM requires less model specifications:

GMM

(i) Instead of requiring densities, it asks for only moment restrictions;

(ii) GMM is largely “semi-parameter“, where the parameter of interest is
finite-dimensional [the full data’s distribution function may not be
known (infinite-dimensional)], and therefore MLE is not applicable.
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Examples: Paremetric regressions

The regression data {wi = (Yi , x)i}ni=1 (Yi ∈ R: response, xi : covariate)

yi = m (xi , θ) + εi ,E (εi |xi ) = 0,Var (εi |x) = σ2 (xi ) <∞

where {εi}ni=1 are the indepedent error variable.
By least square method, the score functions is

g (wi , θ) =
∂m (xi , θ)

∂θ
(yi −m (xi , θ)) .

and the weighted least square method leads to

g (wi , θ) =
∂m (xi , θ)

∂θ
· yi −m (xi , θ)

σ2 (xi , r0)
.

if is σ2 (xi , γ0) known.

In both methods, γ0 = p. And θ̂ is directly solved by estimating equation
1
n

∑
i=1 g (wi , θ) = 0.
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Example: Poisson regressions

Consider the equal-dispersion assumption for Yi being count data

E (Yi |xi ) = µ (xi , θ) , σ2 (Yi |xi ) = µ (xi , θ) .

The µ (xi , θ) is a known funtion, for example: µ (xi , θ) = ex
>
i θ. Define

g (wi , θ) =

(
g1 (wi , θ)
g2 (wi , θ)

)
=:

(
∂µ(xi ,θ)
∂θ (yi − µ (xi , θ))

a (xi , θ)
{

[yi − µ
(
xi , θi ]

2 − µ (xi , θi )
} )

We can choose a (xi , θ) almost freely to satisfy,, but we need choose one
that θ̂ is most efficient.
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GMM

Let {wi}ni=1 be IID r.vs in Rm, g(wi ; θ) ∈ Rr be r-dimensional known
function of wi and θ ∈ Θ ⊂ Rp. So that

∃θ0 ∈ Θ, E{g(wi ; θ0)} = 0

If r = p, we call it “just-identified“;

If r = p, the θ̂ can be made by solving directly:

1

n

n∑
i=1

g(wi ; θ) = 0

When r > p, we call it “over-identified“.

Song Xi Chen, Xiaojun Song (Slides) Asymptotic Statistics July 13, 2021 167 / 181



GMM

Definition 7.4

Given g(wi ; θ) s.t. Eg(wi ; θ0) = 0 for some θ0 ∈ Θ. The GMM estimator
θ̂GMM of θ is

θ̂n = argmin
θ∈Θ

(
1

n

n∑
i=1

g(wi ; θ)

)T

Ŵn

(
1

n

n∑
i=1

g(wi ; θ)

)

for contain r × r non-negative definite matrices Ŵn, which satisfied that
Ŵn

p→W0 > 0, W0 is deterministic and may depend on θ0.

The GMM estimator above is asymptotically equivalent to

θ̂n0 = argmin
θ∈Θ

(
1

n

n∑
i=1

gT (wi ; θ)W0
1

n

n∑
i=1

g(wi ; θ)

)

which is a M-estimator.
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GMM Identification

To ensure identification of θ0, we assume θ0 is the“ unique”

θ ∈ Θ, s.t. Eg(wi ; θ) = 0

As W0 > 0, θ0 is also the unique θ which minimizes

E{gT (wi ; θ)}W0E{g(wi ; θ)}

Under certain conditions, we have θ̂GMM
p→ θ0.
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Asymptotic Normality

Suppose:

(i) g(w , ·) is a continuous differentiable function on θ ∈ Int(Θ);

(ii) G0 = E
(
∂g(w ,θ0)

∂θ

)
r×p

exists and its has full rank p.

Then under the assumption θ̂n
p→ θ0, we have

AN:

√
n(θ̂n − θ0)

d→ N

(
0,
(

GT
0 W0G0

)−1
GT

0 W0Λ0W0G0

(
GT

0 W0G0

)−1
)

where

1√
n

n∑
i=1

g(wi ; θ0)
d→ N (0,Λ0) , Λ0 = var {g(wi ; θ0)}
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Proof

From the definition of θ̂n (Definition 6.4),

1

n

n∑
i=1

∂g>(wi , θ̂n)

∂θ
Ŵn

(
1

n

n∑
i=1

g(wi , θ̂n)

)
= 0 (34)

Note that:
∂g>Wg

∂θi
=
∂g>

∂θi

∂g>Wg

∂g
=
∂g>

∂θi
2Wg

So,
∂g>Wg

∂θ
=
∂g>

∂θ

∂g>Wg

∂g
= 2

∂g>

∂θi
Wg

By using Taylor formula on (34) around θ0 (assuming θ̂n
p−−→ θ0):

1

n

n∑
i=1

∂g>(wi , θ̂n)

∂θ
Ŵn

{
1

n

n∑
i=1

g(wi , θ0) +
1

n

n∑
i=1

∂g(wi , θ̂
∗
n)

∂θ
(θ̂n − θ0)

}
= 0 (35)

where θ̂∗n is between θ0 and θ̂n.
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Proof

Since θ̂n
p.−−→ θ0, it is easy to verify that:

1

n

n∑
i=1

∂g>(wi , θ̂n)

∂θ
,

1

n

n∑
i=1

∂g>(wi , θ̂
∗
n)

∂θ

p.−−→ G>0 = E

[
∂g(w , θ0)

∂θ

]

Note that Ŵn
p.−−→ W0, from (35),

A0(θ̂n − θ0) :=
(
G>0 W0G0

)
(θ̂n − θ0) = −G0W0

1

n

n∑
i=1

g(wi , θ0) {1 + op(1)}

and,
√

n(θ̂n − θ0) = −A−1
0 G>0 W0

1√
n

n∑
i=1

g(wi , θ0) + op(1)

As 1√
n

∑n
i=1 g(wi , θ0)

d.−−→ N(0,Λ0) where Λ0 = var(g(wi , θ0)), we obtain:

√
n(θ̂n − θ0)

d.−−→ N
(
0,A−1

0 G>0 W0Λ0W0G0A−1
0

)
Thus establish the asymptotic normality of θ̂n.
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Inference

If we use W0 instead of Wn, then

We can attain the same asymptotic normal distribution.

Denote A0 =
(
GT

0 W0G0

)
and B0 = GT

0 W0Λ0W0G0, Then

Avar(θ̂GMM) = A−1
0 B0A−1

0 /n.

It can be estimated by Â−1
0 B̂0Â−1

0 /n, where

Â0 = ĜT ŴnĜ , B̂0 = ĜT ŴnΛ̂Ĝ Ŵn

Ĝ =
1

n

n∑
i=1

∂g(wi ; θ̂)

∂θ
, Λ̂ =

1

n

n∑
i=1

g(wi ; θ̂)gT (wi ; θ̂)
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Optional Weighting Matrix

The GMM estimator depends on the choice of Ŵn, the weighting matrix.

Question: which Ŵn or W0 is the best?

If we choose W0 = Λ−1
0 , then B0 = A0 and

Avar(θ̂GMM) = A−1
0 = (GT

0 Λ−1
0 G0)

−1

In Hansen(1982), it can be shown that for any W0 > 0:

Avar[θ̂n(W0)] := (GT
0 W−1

0 G0)−1(GT
0 W0Λ0W0G0)(GT

0 W−1
0 G0)−1

≥ (GT
0 Λ−1

0 G0)−1 =: Avar[θ̂n(Λ−1
0 )]

Hence, the choice of W ∗
0 = Λ−1

0 is the optimal.
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Weight Matrix

The efficient GMM estimator will use Ŵn = Λ̂−1 as the weight
matrix, where

Λ̂ =
1

n

n∑
i=1

g(wi ;
ˆ̂
θ)gT (wi ;

ˆ̂
θ)

The ˆ̂θ is an initial estimator, any consistent estimator of θ can be
used.

For instance, it can be derived by minimizing

1

n

n∑
i=1

gT (wi ; θ)
1

n

n∑
i=1

g(wi ; θ)

So ˆ̂
θ is a GMM with Ŵn = Ir .

Song Xi Chen, Xiaojun Song (Slides) Asymptotic Statistics July 13, 2021 175 / 181



The GMM estimator

Step 1: Construct an initial estimator ˆ̂
θ, which is a GMM with any

weight Ŵn > 0, for example Ŵn = Ir .

Step 2: Obtain the optimal weight matirx

Ŵ ∗
n =

(
1

n

n∑
i=1

g(wi ;
ˆ̂
θ)gT (wi ;

ˆ̂
θ)

)−1

Then the GMM estimator with Ŵ ∗
n as the weight matrix satisfies:

√
n
(
θ̂∗GMM − θ0

)
d→ N

(
0,
(

GT
0 ΛT

0 G0

)−1
)
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Sargan-Hansen Test

It can be shown with θ̂ = θ̂GMM , the objective function satisfies
(Homework):

Tn(θ̂) = n−1/2
n∑

i=1

gT (wi ; θ̂)Ŵ ∗
n n−1/2

n∑
i=1

g(wi ; θ̂)
d→ χ2

r−p

From this asymptotic distribution:

We also need the condition r − p ≥ 1.

Hypothesis Testing: reject H0 : Eg(wi ; θ0) = 0 if Tn(θ) > χ2
r−p,1−α.

θ̂GMM also is named minimum χ2-estimator.
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Hypothesis Testing

Test for H0 : c(θ0) = 0, where c(θ) ∈ RQ with Q ≤ q.

Wald Test:

cT (θ̂)
(

V̂ (θ̂)
)−1

c(θ̂), V̂ (θ̂) = var
(

c(θ̂)
)

LM Test:

T̃n =
1

n

[
n∑

i=1

gT (wi ; θ̃n)Ŵ ∗
n

n∑
i=1

g(wi ; θ̃n)−
n∑

i=1

gT (wi ; θ̂n)Ŵ ∗
n

n∑
i=1

g(wi ; θ̂n)

]

We have T̃n
d→ χ2

Q under H0, where:

θ̃n = argmin
θ∈Θ,c(θ)=0

n∑
i=1

gT (wi ; θ)Ŵ ∗
n

n∑
i=1

g(wi ; θ)
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An important feature

If we have r restrictions, would more moment restrictions lead to more efficiency?
To appreciate this question, let

g(w , θ) = (g(r−1)(w , θ)︸ ︷︷ ︸
r

, gr (w , θ)︸ ︷︷ ︸
1

)T ,Eg(w , θ) = 0.

The asymptotic variance of θ̂ based on g(·, ·) ∈ Rr is:

V−1
r :=

[
E

(
∂gT

∂θ

)
E−1(ggT )E

(
∂g

∂θ

)]−1

And asymptotic variance of θ̂(r−1) based on g(r−1) is:

V−1
r−1 :=

[
E

(
∂gT

(r−1)

∂θ

)
E−1(g(r−1)g

T
(r−1))E

(
∂g(r−1)

∂θ

)]−1

An important feature in GMM:

V−1
r ≤ V−1

r−1.

Hence, GMM with r restrictions is at least as efficient as GMM with r − 1
restrictions.
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Proof

Note that at θ = θ0

E (ggT ) =

 E
(

g(r−1)gT
(r−1)

)
E
(
g(r−1)gT

r

)
E
(

gT
(r−1)gr

))
E
(
g 2
r

)
 :=

(
A B

BT C

)

Let D = C − BTAB. The inverse matrix of block matrices formula gives:(
A B
BT C

)−1

=

(
A−1 0
0 0

)
+

(
A−1B
−I

)
D−1

(
B>A,−I

)
Write E (ggT ) :=

(
A B
BT C

)
and A := E

(
g(r−1)gT

(r−1)

)
. We have

(
E (ggT )

)−1
=

[ (
E
(

g(r−1)gT
(r−1)

))−1
0

0 0

]
+ H

where H ≥ 0.
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Proof

Therefore,

Vr =

 E
(
∂g(r−1)

∂θ

)
E
(
∂gr
∂θ

) >{[ (E(g(r−1)g
T
(r−1)

))−1

0

0 0

]
+ H

} E
(
∂g(r−1)

∂θ

)
E
(
∂gr
∂θ

) 
= E>

(
∂g(r−1)

∂θ

)(
E
(

g(r−1)g
T
(r−1)

))−1

E

(
∂g(r−1)

∂θ

)
+ H̃

= Vr−1 + H̃ ≥ Vr−1, V−1
r ≤ V−1

r−1

Remark 21
From the above inequality, we know that if

E

(
∂g>

∂θ

)
HE

(
∂g

∂θ

)
6= 0

then there will be reduction of the asymptotic variance in using the moment
restriction in some directions or combination of the parameter space. This is
exactly the attraction of GMM.
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